Wiki-Quellcode von Lösung Stochastik 4_1
Zuletzt geändert von akukin am 2025/12/29 17:12
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | === Teilaufgabe a) === | ||
| 2 | {{detail summary="Erwartungshorizont"}} | ||
| 3 | Zufallsvariable {{formula}}X{{/formula}}: Auszahlung für den Spieler in Euro | ||
| 4 | (% class="border" style="width:30%" %) | ||
| 5 | |{{formula}}x_i{{/formula}}|6|2|1 | ||
| 6 | |{{formula}}P(X = x_i){{/formula}}|{{formula}}\frac{1}{16}{{/formula}}|{{formula}}\frac{3}{16}{{/formula}}|{{formula}}\frac{3}{4}{{/formula}} | ||
| 7 | |||
| 8 | |||
| 9 | {{formula}} | ||
| 10 | E(X) = \frac{1}{16}\cdot 6 + \frac{3}{16}\cdot 2 + \frac{3}{4}\cdot 1 = \frac{3}{2} | ||
| 11 | {{/formula}} | ||
| 12 | <br> | ||
| 13 | Der Einsatz {{formula}}a{{/formula}} darf höchstens 1,50 € betragen, damit der Spieler auf lange Sicht keinen Verlust macht. | ||
| 14 | {{/detail}} | ||
| 15 | |||
| 16 | |||
| 17 | {{detail summary="Erläuterung der Lösung"}} | ||
| 18 | |||
| 19 | {{/detail}} | ||
| 20 | |||
| 21 | === Teilaufgabe b) === | ||
| 22 | {{detail summary="Erwartungshorizont"}} | ||
| 23 | Flächeninhalt des gesamten Kreises: | ||
| 24 | {{formula}} | ||
| 25 | A_{\text{gesamt}} = 16\pi | ||
| 26 | {{/formula}} | ||
| 27 | <br> | ||
| 28 | Flächeninhalt des roten Kreises: | ||
| 29 | {{formula}} | ||
| 30 | A_{\text{rot}} = \pi | ||
| 31 | {{/formula}} | ||
| 32 | <br> | ||
| 33 | Flächeninhalt des blauen Kreisrings: | ||
| 34 | {{formula}} | ||
| 35 | A_{\text{blau}} = 4\pi - \pi = 3\pi | ||
| 36 | {{/formula}} | ||
| 37 | <br><p> | ||
| 38 | Flächeninhalt des grünen Kreisrings: | ||
| 39 | {{formula}} | ||
| 40 | A_{\text{grün}} = 16\pi - 4\pi = 12\pi | ||
| 41 | {{/formula}} | ||
| 42 | </p><p> | ||
| 43 | Anteil des roten Kreises {{formula}} | ||
| 44 | =\frac{\pi}{16\pi} = \frac{1}{16} = P(\text{rot}) | ||
| 45 | {{/formula}} | ||
| 46 | </p><p> | ||
| 47 | Anteil des blauen Kreisrings {{formula}} | ||
| 48 | =\frac{3\pi}{16\pi} = \frac{3}{16} = P(\text{blau}) | ||
| 49 | {{/formula}} | ||
| 50 | </p> | ||
| 51 | Anteil des grünen Kreisrings {{formula}}=\frac{12\pi}{16\pi} = \frac{3}{4} = P(\text{grün}) | ||
| 52 | {{/formula}} | ||
| 53 | {{/detail}} | ||
| 54 | |||
| 55 | |||
| 56 | {{detail summary="Erläuterung der Lösung"}} | ||
| 57 | |||
| 58 | {{/detail}} |