Wiki-Quellcode von Lösung Stochastik 5_1
Zuletzt geändert von akukin am 2025/12/29 17:35
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | === Teilaufgabe a) === | ||
| 2 | {{detail summary="Erwartungshorizont"}} | ||
| 3 | {{formula}} | ||
| 4 | P(B) = \frac{8}{32} + \frac{4}{32} - \frac{1}{32} = \frac{11}{32} | ||
| 5 | {{/formula}} | ||
| 6 | {{/detail}} | ||
| 7 | |||
| 8 | |||
| 9 | {{detail summary="Erläuterung der Lösung"}} | ||
| 10 | |||
| 11 | {{/detail}} | ||
| 12 | |||
| 13 | === Teilaufgabe b) === | ||
| 14 | {{detail summary="Erwartungshorizont"}} | ||
| 15 | {{formula}}A{{/formula}}: Es wird ein Ass gezogen. | ||
| 16 | <br> | ||
| 17 | {{formula}}J{{/formula}}: Es wird ein Joker gezogen. | ||
| 18 | <br> | ||
| 19 | [[image:Lösung5_1.png||width="250"]] | ||
| 20 | <br> | ||
| 21 | {{formula}} | ||
| 22 | \begin{align*} | ||
| 23 | P(A,A) = | ||
| 24 | \frac{4}{4+n}\cdot \frac{3}{3+n} &= \frac{2}{5} \\ | ||
| 25 | \Leftrightarrow \ \ | ||
| 26 | \frac{12}{n^2 + 7n + 12} &= \frac{2}{5} \\ | ||
| 27 | \Leftrightarrow | ||
| 28 | 2n^2 + 14n + 24 &= 60 | ||
| 29 | \end{align*} | ||
| 30 | {{/formula}} | ||
| 31 | {{/detail}} | ||
| 32 | |||
| 33 | |||
| 34 | {{detail summary="Erläuterung der Lösung"}} | ||
| 35 | |||
| 36 | {{/detail}} |