Wiki-Quellcode von Lösung Erkunden (eine Potenzfunktion) - Wertetabelle
Version 7.1 von Tina Müller am 2024/10/15 09:51
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | (% style="list-style: alphastyle" %) | ||
| 2 | 1. (((Randverhalten: Verhalten im Unendlichen | ||
| 3 | 1) Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) | ||
| 4 | (% class="border" %) | ||
| 5 | |={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+1000{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}}|{{formula}}+10^{+\infty}{{/formula}} | ||
| 6 | |={{formula}}f(x){{/formula}}|1|{{formula}}\frac{1}{10}{{/formula}}|{{formula}}\frac{1}{100}{{/formula}}|{{formula}}\frac{1}{1000}{{/formula}}|{{formula}}\frac{1}{1000000}{{/formula}}|{{formula}}\frac{1}{1000000000}{{/formula}}|{{formula}}\frac{1}{1000000000000}{{/formula}}|0 | ||
| 7 | |||
| 8 | 2) Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) | ||
| 9 | (% class="border" %) | ||
| 10 | |={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}}|{{formula}}-10^{-\infty}{{/formula}} | ||
| 11 | |={{formula}}f(x){{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-\frac{1}{10}{{/formula}}|{{formula}}-\frac{1}{100}{{/formula}}|{{formula}}-\frac{1}{1000}{{/formula}}|{{formula}}-\frac{1}{1000000}{{/formula}}|{{formula}}\frac{1}{1000000000}{{/formula}}|{{formula}}\frac{1}{1000000000000}{{/formula}}|0 | ||
| 12 | ))) | ||
| 13 | 1. (((Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) | ||
| 14 | 1) Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) | ||
| 15 | (% class="border" %) | ||
| 16 | |={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-0,1{{/formula}}| {{formula}}-0,01{{/formula}}| {{formula}}-0,001{{/formula}}| {{formula}}-10^{-6}{{/formula}}| {{formula}}-10^{-9}{{/formula}}| {{formula}}-10^{-12}{{/formula}}|0 | ||
| 17 | |={{formula}}f(x){{/formula}}|{{formula}}-1{{/formula}}|{{formula}}-10{{/formula}}|{{formula}}-100{{/formula}}|{{formula}}-1000{{/formula}}|{{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{-12}{{/formula}}|{{formula}}-\infty{{/formula}} | ||
| 18 | |||
| 19 | 2) Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) | ||
| 20 | (% class="border" %) | ||
| 21 | |={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{-6}{{/formula}}| {{formula}}+10^{-9}{{/formula}}| {{formula}}+10^{-12}{{/formula}}|0 | ||
| 22 | |={{formula}}f(x){{/formula}}|{{formula}}1{{/formula}}|{{formula}}10{{/formula}}|{{formula}}100{{/formula}}|{{formula}}1000{{/formula}}|{{formula}}10^6{{/formula}}| {{formula}}10^9{{/formula}}|{{formula}}10^{-12}{{/formula}}|{{formula}}\infty{{/formula}} | ||
| 23 | ))) | ||
| 24 | |||
| 25 | c.) Zur Symmetrie: | ||
| 26 | Die Funktion {{formula}} f(x) = \frac{1}{x} {{/formula}} ist punktsymmetrisch zur Ursprungsgeraden, da gilt: | ||
| 27 | {{formula}} | ||
| 28 | f(-x) = -f(x) | ||
| 29 | {{/formula}} | ||
| 30 | Das bedeutet, dass die Funktion eine Symmetrie bezüglich des Ursprungs hat. | ||
| 31 | |||
| 32 | d.) Zum Randverhalten: | ||
| 33 | {Verhalten im Unendlichen} | ||
| 34 | {{formula}} \( \lim_{x \to +\infty} f(x) = 0 \){{/formula}} | ||
| 35 | {{formula}} \( \lim_{x \to -\infty} f(x) = 0 \){{/formula}} | ||
| 36 | |||
| 37 | {Verhalten nahe der Definitionslücke} | ||
| 38 | {{formula}} \( \lim_{x \to 0^-} f(x) = -\infty \){{/formula}} | ||
| 39 | {{formula}}\( \lim_{x \to 0^+} f(x) = +\infty \){{/formula}} | ||
| 40 | |||
| 41 | 1. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=g(x){{/formula}} und {{formula}}x\in \mathbb{R}^*{{/formula}}. |