Zuletzt geändert von Martin Rathgeb am 2025/06/03 23:45

Zeige letzte Bearbeiter
1 a) {{formula}}g(x)=-\frac{2}{x-1}+3{{/formula}} \\
2 b) {{formula}}g(x)=-\frac{2}{x-1}-6{{/formula}} \\
3 c) {{formula}}g(x)=-\frac{2}{x-1}+3{{/formula}} \\
4
5 (% class="border" style="width:100%" %)
6 | Schritt | ** Teilaufgabe a)** | ** Teilaufgabe b)** | ** Teilaufgabe c)**
7 | Startfunktion | {{formula}}f(x) = \frac{1}{x}{{/formula}} | {{formula}}f(x) = \frac{1}{x}{{/formula}} | {{formula}}f(x) = \frac{1}{x}{{/formula}}
8 | 1. Transformation | {{formula}}f(x) \rightarrow -\frac{1}{x}{{/formula}} | {{formula}}f(x) \rightarrow \frac{1}{x - 1}{{/formula}} | {{formula}}f(x) \rightarrow \frac{1}{x - 1}{{/formula}}
9 | 2. Transformation | {{formula}}-\frac{1}{x} \rightarrow -\frac{2}{x}{{/formula}} | {{formula}}\frac{1}{x - 1} \rightarrow \frac{1}{x - 1} + 3{{/formula}} | {{formula}}\frac{1}{x - 1} \rightarrow \frac{2}{x - 1}{{/formula}}
10 | 3. Transformation | {{formula}}-\frac{2}{x} \rightarrow -\frac{2}{x - 1}{{/formula}} | {{formula}}\frac{1}{x - 1} + 3 \rightarrow \frac{2}{x - 1} + 6{{/formula}} | {{formula}}\frac{2}{x - 1} \rightarrow -\frac{2}{x - 1}{{/formula}}
11 | 4. Transformation | {{formula}}-\frac{2}{x - 1} \rightarrow g(x) = -\frac{2}{x - 1} + 3{{/formula}} | {{formula}}\frac{2}{x - 1} + 6 \rightarrow g(x) = -\frac{2}{x - 1} - 6{{/formula}} | {{formula}}-\frac{2}{x - 1} \rightarrow g(x) = -\frac{2}{x - 1} + 3{{/formula}}