Lösung Exponentialgleichungen (Logarithmieren)

Version 7.1 von Kim Fujan am 2025/05/20 09:08

  1. \( e^x=3 \quad \left| ln( ) \)
    \( ln(e^x)=ln(3) \)
    \( x=ln(3) \)
    \(\mathbb{L}= \left\{ ln(3) \right\} \)
      
  2. \( 2e^x-4=8 \quad \left|+4\)
    \( 2e^x=12 \quad \left|:2\)
    \( e^x=6 \quad \left| ln( ) \)
    \( x=ln(6) \)
    \(\mathbb{L}= \left\{ ln(6) \right\} \)
      
  3. \( 2e^{-0.5x}=6 \quad \left|:2 \)
    \( e^{-0.5x}=3 \quad \left| ln( ) \)
    \( -0.5x=ln(3) \quad \left|\cdot (-2) \)
    \( x=-2 \cdot ln(3) \)
    \(\mathbb{L}= \left\{-2 \cdot ln(3) \right\} \)
      
  4. \( e^x=-5 \quad \left| ln( ) \)
    \(x=ln(-5)\)
    keine Lösung!
    \(\mathbb{L}= \left\{ \right\} \)
      
  5. \( 4\cdot 5^x=100 \quad \left|:4 \)
    \( 5^x=25 \quad \left| \text{Exponentenvergleich} \)
    \( 5^x=5^2 \)
    \( x=2 \)
    \(\mathbb{L}= \left\{ 2 \right\} \)