Wiki-Quellcode von Lösung Winkel am Einheitskreis
Zuletzt geändert von Thomas Köhler am 2024/07/18 17:44
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | (% class="border" %) | ||
2 | |=Winkel {{formula}}\alpha{{/formula}}|30°|60°|90°|120°|150°|180°|210°|240°|270°|300°|330°|360° | ||
3 | |{{formula}}\sin(\alpha){{/formula}}| | ||
4 | {{formula}}\frac{1}{2}{{/formula}}| | ||
5 | {{formula}}\frac{\sqrt{3}}{2}{{/formula}}| | ||
6 | {{formula}}1{{/formula}}| | ||
7 | {{formula}}\frac{\sqrt{3}}{2}}{{/formula}}| | ||
8 | {{formula}}\frac{1}{2}{{/formula}}| | ||
9 | {{formula}}0{{/formula}}| | ||
10 | {{formula}}-\frac{1}{2}{{/formula}}| | ||
11 | {{formula}}-\frac{\sqrt{3}}{2}}{{/formula}}| | ||
12 | {{formula}}-1{{/formula}}| | ||
13 | {{formula}}-\frac{\sqrt{3}}{2}}{{/formula}}| | ||
14 | {{formula}}-\frac{1}{2}}{{/formula}}| | ||
15 | {{formula}}0{{/formula}} | ||
16 | |{{formula}}\cos(\alpha){{/formula}}| | ||
17 | {{formula}}\frac{\sqrt{3}}{2}{{/formula}}| | ||
18 | {{formula}}\frac{1}{2}{{/formula}}| | ||
19 | {{formula}}0{{/formula}}| | ||
20 | {{formula}}-\frac{1}{2}}{{/formula}}| | ||
21 | {{formula}}-\frac{\sqrt{3}}{2}}{{/formula}}| | ||
22 | {{formula}}-1{{/formula}}| | ||
23 | {{formula}}-\frac{\sqrt{3}}{2}}{{/formula}}| | ||
24 | {{formula}}-\frac{1}{2}}{{/formula}}| | ||
25 | {{formula}}0{{/formula}}| | ||
26 | {{formula}}\frac{1}{2}{{/formula}}| | ||
27 | {{formula}}\frac{\sqrt{3}}{2}}{{/formula}}| | ||
28 | {{formula}}1{{/formula}} | ||
29 | |||
30 | |||
31 | [[image:Einheitskreis_winkel.png||width=50%]] | ||
32 | |||
33 | |||
34 | |||
35 | zu 2. | ||
36 | |||
37 | {{formula}}\sin(360 + \beta) = \sin(\beta){{/formula}} bzw. {{formula}}\cos(360 + \beta)=\cos(\beta){{/formula}} |