Lösung Winkel am Einheitskreis
                  Zuletzt geändert von akukin am 2025/08/14 16:28
              
      | Winkel \(\alpha\) | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | 360° | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(\sin(\alpha)\) | \(\frac{1}{2}\)  | \(\frac{\sqrt{3}}{2}\)  | \(1\)  | \(\frac{\sqrt{3}}{2}\)  | \(\frac{1}{2}\)  | \(0\)  | \(-\frac{1}{2}\)  | \(-\frac{\sqrt{3}}{2}\)  | \(-1\)  | \(-\frac{\sqrt{3}}{2}\)  | \(-\frac{1}{2}\)  | \(0\)  | 
| \(\cos(\alpha)\) | \(\frac{\sqrt{3}}{2}\)  | \(\frac{1}{2}\)  | \(0\)  | \(-\frac{1}{2}\)  | \(-\frac{\sqrt{3}}{2}\)  | \(-1\)  | \(-\frac{\sqrt{3}}{2}\)  | \(-\frac{1}{2}\)  | \(0\)  | \(\frac{1}{2}\)  | \(\frac{\sqrt{3}}{2}\)  | \(1\)  | 

zu 2.
\(\sin(360 + \beta) = \sin(\beta)\) bzw. \(\cos(360 + \beta)=\cos(\beta)\)