BPE 13 Einheitsübergreifend

Version 5.1 von Holger Engels am 2023/11/23 14:58

Betrachtet wird für negative rationale Zahlen q die Potenzfunktion p mit p(x)=x^q;\: x\neq 0.

Für b \rightarrow \infty heißt U_q=\int_1^b{p(x)}\cdot dx uneigentliches Integral über p, falls U_q eine reelle Zahl ergibt.

Überprüfe, für welche Werte von q das uneigentliche Integral U_q existiert.

x hoch minus 2.png

#problemlösen

AFB   IIIKompetenzen   K2 K5Bearbeitungszeit   40 min
Quelle   Dr. Andreas DinhLizenz   CC BY-SA

cos und pot.pngIn [0; \pi/2] soll die Funktion f mit f(x)=\cos{x} durch eine Potenzfunktion g mit g(x)=1-ax^q angenähert werden, wobei q eine positive rationale Zahl ist und a so gewählt wird, dass der Graph von g ebenfalls bei π/2 eine Nullstelle besitzt.

  1. Bestimme a in Abhängigkeit von q.
  2. Begründe, weshalb ein kleiner Wert des Integrals

    \int_0^{\frac{\pi}{2}} f(x)-g(x)\cdot dx

    ein guter Hinweis dafür ist, dass g eine gute Näherung für f ist.

  3. Finde eine Potenzfunktion g, die f gemäß des Kriteriums von b) gut annähert.

(Bonus: Stelle f und die Annäherung aus c) mit Geogebra dar und berechne die durchschnittliche Abweichung von f und der Annäherungsfunktion.)

#problemlösen

AFB   IIIKompetenzen   K2 K5 K4Bearbeitungszeit   30 min
Quelle   Dr. Andreas DinhLizenz   CC BY-SA