Wiki-Quellcode von Lösung Bruchgleichungen
Zuletzt geändert von Stephanie Wietzorek am 2025/11/17 14:11
Verstecke letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| |
1.1 | 1 | Löse unter Angabe der Definitionsmenge folgende Gleichungen: |
| 2 | |||
| 3 | 1. {{formula}}\frac{10}{x}=5 {{/formula}} | ||
| 4 | |||
| 5 | {{formula}}D = \mathbb{R} \backslash \{0\}{{/formula}} | ||
| 6 | {{formula}}L = \{2\}{{/formula}} | ||
| 7 | |||
| 8 | |||
| 9 | 2. {{formula}}\frac{10}{x+1}=5 {{/formula}} | ||
| 10 | |||
| 11 | {{formula}}D = \mathbb{R} \backslash \{-1\}{{/formula}} | ||
| 12 | {{formula}}L = \{1\}{{/formula}} | ||
| 13 | |||
| 14 | |||
| 15 | 3. {{formula}}\frac{10}{x+1}=\frac{5}{x-1} {{/formula}} | ||
| 16 | |||
| 17 | {{formula}}D = \mathbb{R} \backslash \{-1;1\}{{/formula}} | ||
| 18 | {{formula}}L = \{3\}{{/formula}} | ||
| 19 | |||
| 20 | |||
| 21 | 4. {{formula}}\frac{10}{x+1}=\frac{5x}{x-1}-\frac{5x^2}{x^2-1} {{/formula}} | ||
| 22 | |||
| 23 | {{formula}}D = \mathbb{R} \backslash \{-1;1\}{{/formula}} | ||
| 24 | {{formula}}\frac{10}{x+1}=\frac{5x}{x-1}-\frac{5x^2}{x^2-1} {{/formula}} {{formula}}\quad HN =(x-1)(x+1){{/formula}} | ||
| 25 | {{formula}}=\frac{10(x-1)}{(x+1)(x-1)}=\frac{5x(x+1)}{(x-1)(x+1)}-\frac{5x^2}{x^2-1} |\cdot HN {{/formula}} | ||
| 26 | {{formula}}=10(x-1)=5x(x+1)-5x^2 {{/formula}} | ||
| 27 | {{formula}}=10x-10=5x^2+5x-5x^2 {{/formula}} | ||
| 28 | {{formula}}=5x=10 {{/formula}} | ||
| 29 | {{formula}}=x=2 {{/formula}} | ||
| 30 | {{formula}}L = \{2\}{{/formula}} | ||
| 31 | |||
| 32 | |||
| 33 | 5. {{formula}}\frac{10}{2x+2}=\frac{5}{x+1}-1 {{/formula}} | ||
| 34 | |||
| 35 | {{formula}}D = \mathbb{R} \backslash \{-1\}; \quad HN = 2(x+1)=2x+2{{/formula}} | ||
| |
2.2 | 36 | {{formula}}10 = 10 - 2x - 2{{/formula}} |
| 37 | {{formula}}x = -1{{/formula}} | ||
| 38 | {{formula}}L = \{\} \qquad da -1 \notin D {{/formula}} |