Tipp Quadratische Gleichungen
Gleichung: \(ax^2 + bx + c = 0; a \neq 0\)
Jede quadratische Gleichung kann mit dieser Formel gelöst werden:
Lösungsformel: \(x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}\)
Diskriminante: \(D = b^2 - 4ac\)
Anzahl der Lösungen:
1) Wenn \(D > 0\) gilt, dann gibt es genau zwei Lösungen.
2) Wenn \(D = 0\) gilt, dann gibt es genau eine Lösung.
3) Wenn \(D < 0 \) gilt, dann gibt es keine Lösung.
Sonderfälle:
mit zusätzlichen, besonderen Lösungswegen
4) \(b=0\), also \(\mathbf{ax^2 + c = 0}\)
(„Reinquadratische Gleichung“):
Nach \(x^2\) auflösen und Wurzel ziehen.
5) Produktform, also \(\mathbf{a(x-x_1)(x-x_2) = 0}\)
(„Satz vom Nullprodukt“):
Jeden Faktor einzeln gleich Null setzen.
6) \(c = 0\), also \(\mathbf{ax^2 + bx = 0}\)
Ausklammern:
Höchste gemeinsame Potenz von \(x\) ausklammern und den Satz vom Nullprodukt anwenden.
Jede Aufgabe kann auch mit Hilfe der p-q-Formel gelöst werden.