Wiki-Quellcode von Lösung Abbildungsketten
Zuletzt geändert von Holger Engels am 2024/10/23 09:18
Verstecke letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
![]() |
1.1 | 1 | (% style="list-style: alphastyle" %) |
2 | 1. (((Gegeben seien die Funktionen //f// und //g// mit {{formula}}f(x) = x^2{{/formula}} und {{formula}}g(x) = \sqrt{x}{{/formula}}. Fülle jeweils die Lücken aus: | ||
3 | |||
![]() |
2.1 | 4 | {{formula}}+4\mathop{\longmapsto}\limits^{\text{f}}16\mathop{\longmapsto}\limits^{\text{g}} 4{{/formula}} |
![]() |
1.1 | 5 | {{formula}}-4\mathop{\longmapsto}\limits^{\text{f}}16\mathop{\longmapsto}\limits^{\text{g}}4{{/formula}} |
6 | {{formula}}+4\mathop{\longmapsto}\limits^{\text{g}}2\mathop{\longmapsto}\limits^{\text{f}}4{{/formula}} | ||
![]() |
2.1 | 7 | {{formula}}-4\mathop{\longmapsto}\limits^{\text{g}}\text{n.D.}{{/formula}} |
![]() |
1.1 | 8 | {{formula}}\pm 2\mathop{\longmapsto}\limits^{\text{f}}4\mathop{\longmapsto}\limits^{\text{g}}2{{/formula}} |
![]() |
2.1 | 9 | {{formula}}-3\mathop{\longmapsto}\limits^{\text{f}}9\mathop{\longmapsto}\limits^{\text{/}}-3{{/formula}} |
![]() |
1.1 | 10 | ))) |
11 | 1. (((Seien die Funktionen //f// und //g// nun definiert durch {{formula}}f(x) = x^3{{/formula}} und {{formula}}g(x) = \sqrt[3]{x}{{/formula}}. | ||
12 | |||
![]() |
2.1 | 13 | {{formula}}+8\mathop{\longmapsto}\limits^{\text{f}}512\mathop{\longmapsto}\limits^{\text{g}}8{{/formula}} |
14 | {{formula}}-8\mathop{\longmapsto}\limits^{\text{f}}-512\mathop{\longmapsto}\limits^{\text{g}}-8{{/formula}} | ||
15 | {{formula}}+8\mathop{\longmapsto}\limits^{\text{g}}2\mathop{\longmapsto}\limits^{\text{f}}8{{/formula}} | ||
16 | {{formula}}-8\mathop{\longmapsto}\limits^{\text{g}}-2\mathop{\longmapsto}\limits^{\text{f}}-8{{/formula}} | ||
17 | {{formula}}-3\mathop{\longmapsto}\limits^{\text{f}}-27\mathop{\longmapsto}\limits^{\text{g}}-3{{/formula}} | ||
18 | {{formula}}-2\mathop{\longmapsto}\limits^{\text{/}}8\mathop{\longmapsto}\limits^{\text{g}}2{{/formula}} | ||
![]() |
1.1 | 19 | ))) |
20 |