Lösung gleichschenkliges Dreieck

Version 1.1 von Frauke Beckstette am 2024/02/06 09:42

  1. \(\overrightarrow{AB}=\left(\begin{array}{c} 0 \\ 10 \\ 0 \end{array}\right) \qquad \overrightarrow{AC}=\left(\begin{array}{c} -10 \\ 10 \\ 0 \end{array}\right) \qquad \overrightarrow{BC}=\left(\begin{array}{c} -10 \\ 0 \\ 0 \end{array}\right)\)
    Also: \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|=10\)
  2. \(A,\\B,\\C\) liegen in einer Ebene und es gilt: \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|\) Also: \(D(-5|-5|12)\)