Wiki-Quellcode von Lösung Skizzieren
Zuletzt geändert von Miriam Erdmann am 2024/07/19 12:01
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | (% class="border" %) | ||
| 2 | |=Winkel {{formula}}\alpha{{/formula}}|-90°|-60°|-30°|0°|30°|60°|90°|120°|150°|180°|210°|240°|270°|300°|330°|360°|390°|420° | ||
| 3 | |Bogenlänge {{formula}}x{{/formula}}|{{formula}}-\frac{\pi}{2}{{/formula}}|{{formula}}-\frac{\pi}{3}{{/formula}}|{{formula}}-\frac{\pi}{6}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{\pi}{6}{{/formula}}|{{formula}}\frac{\pi}{3}{{/formula}}|{{formula}}\frac{\pi}{2}{{/formula}}|{{formula}}\frac{2\pi}{3}{{/formula}}|{{formula}}\frac{5\pi}{6}{{/formula}}|{{formula}}{\pi}{{/formula}}|{{formula}}\frac{7\pi}{6}{{/formula}}|{{formula}}\frac{4\pi}{3}{{/formula}}|{{formula}}\frac{3\pi}{2}{{/formula}}|{{formula}}\frac{5\pi}{3}{{/formula}}|{{formula}}\frac{11\pi}{6}{{/formula}}|{{formula}}{2\pi}{{/formula}}|{{formula}}\frac{13\pi}{6}{{/formula}}|{{formula}}\frac{7\pi}{3}{{/formula}} | ||
| 4 | |{{formula}}f(x)=\sin(x){{/formula}}|{{formula}}-1{{/formula}}|{{formula}}\frac{-\sqrt{3}}{2}{{/formula}}|{{formula}}-\frac{1}{2}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}1{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}-\frac{1}{2}{{/formula}}|{{formula}}\frac{-\sqrt{3}}{2}{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}\frac{-\sqrt{3}}{2}{{/formula}}|{{formula}}-\frac{1}{2}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}} | ||
| 5 | (% class="border" %) | ||
| 6 | |||
| 7 | (% class="border" %) | ||
| 8 | |=Winkel {{formula}}\alpha{{/formula}}|-90°|-60°|-30°|0°|30°|60°|90°|120°|150°|180°|210°|240°|270°|300°|330°|360°|390°|420° | ||
| 9 | |Bogenlänge {{formula}}x{{/formula}}|{{formula}}-\frac{\pi}{2}{{/formula}}|{{formula}}-\frac{\pi}{3}{{/formula}}|{{formula}}-\frac{\pi}{6}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{\pi}{6}{{/formula}}|{{formula}}\frac{\pi}{3}{{/formula}}|{{formula}}\frac{\pi}{2}{{/formula}}|{{formula}}\frac{2\pi}{3}{{/formula}}|{{formula}}\frac{5\pi}{6}{{/formula}}|{{formula}}{\pi}{{/formula}}|{{formula}}\frac{7\pi}{6}{{/formula}}|{{formula}}\frac{4\pi}{3}{{/formula}}|{{formula}}\frac{3\pi}{2}{{/formula}}|{{formula}}\frac{5\pi}{3}{{/formula}}|{{formula}}\frac{11\pi}{6}{{/formula}}|{{formula}}{2\pi}{{/formula}}|{{formula}}\frac{13\pi}{6}{{/formula}}|{{formula}}\frac{7\pi}{3}{{/formula}} | ||
| 10 | |{{formula}}f(x)=\cos(x){{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}1{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}-\frac{1}{2}{{/formula}}|{{formula}}\frac{-\sqrt{3}}{2}{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}\frac{-\sqrt{3}}{2}{{/formula}}|{{formula}}-\frac{1}{2}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}1{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}\frac{1}{2}{{/formula}} | ||
| 11 | (% class="border" %) | ||
| 12 | |||
| 13 | [[image:LösungAufgabe7.png]] |