Wiki-Quellcode von Lösung Skizzieren
Zuletzt geändert von Miriam Erdmann am 2024/07/19 14:01
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | (% class="border" %) | ||
2 | |=Winkel {{formula}}\alpha{{/formula}}|-90°|-60°|-30°|0°|30°|60°|90°|120°|150°|180°|210°|240°|270°|300°|330°|360°|390°|420° | ||
3 | |Bogenlänge {{formula}}x{{/formula}}|{{formula}}-\frac{\pi}{2}{{/formula}}|{{formula}}-\frac{\pi}{3}{{/formula}}|{{formula}}-\frac{\pi}{6}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{\pi}{6}{{/formula}}|{{formula}}\frac{\pi}{3}{{/formula}}|{{formula}}\frac{\pi}{2}{{/formula}}|{{formula}}\frac{2\pi}{3}{{/formula}}|{{formula}}\frac{5\pi}{6}{{/formula}}|{{formula}}{\pi}{{/formula}}|{{formula}}\frac{7\pi}{6}{{/formula}}|{{formula}}\frac{4\pi}{3}{{/formula}}|{{formula}}\frac{3\pi}{2}{{/formula}}|{{formula}}\frac{5\pi}{3}{{/formula}}|{{formula}}\frac{11\pi}{6}{{/formula}}|{{formula}}{2\pi}{{/formula}}|{{formula}}\frac{13\pi}{6}{{/formula}}|{{formula}}\frac{7\pi}{3}{{/formula}} | ||
4 | |{{formula}}f(x)=\sin(x){{/formula}}|{{formula}}-1{{/formula}}|{{formula}}\frac{-\sqrt{3}}{2}{{/formula}}|{{formula}}-\frac{1}{2}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}1{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}-\frac{1}{2}{{/formula}}|{{formula}}\frac{-\sqrt{3}}{2}{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}\frac{-\sqrt{3}}{2}{{/formula}}|{{formula}}-\frac{1}{2}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}} | ||
5 | (% class="border" %) | ||
6 | |||
7 | (% class="border" %) | ||
8 | |=Winkel {{formula}}\alpha{{/formula}}|-90°|-60°|-30°|0°|30°|60°|90°|120°|150°|180°|210°|240°|270°|300°|330°|360°|390°|420° | ||
9 | |Bogenlänge {{formula}}x{{/formula}}|{{formula}}-\frac{\pi}{2}{{/formula}}|{{formula}}-\frac{\pi}{3}{{/formula}}|{{formula}}-\frac{\pi}{6}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{\pi}{6}{{/formula}}|{{formula}}\frac{\pi}{3}{{/formula}}|{{formula}}\frac{\pi}{2}{{/formula}}|{{formula}}\frac{2\pi}{3}{{/formula}}|{{formula}}\frac{5\pi}{6}{{/formula}}|{{formula}}{\pi}{{/formula}}|{{formula}}\frac{7\pi}{6}{{/formula}}|{{formula}}\frac{4\pi}{3}{{/formula}}|{{formula}}\frac{3\pi}{2}{{/formula}}|{{formula}}\frac{5\pi}{3}{{/formula}}|{{formula}}\frac{11\pi}{6}{{/formula}}|{{formula}}{2\pi}{{/formula}}|{{formula}}\frac{13\pi}{6}{{/formula}}|{{formula}}\frac{7\pi}{3}{{/formula}} | ||
10 | |{{formula}}f(x)=\cos(x){{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}1{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}-\frac{1}{2}{{/formula}}|{{formula}}\frac{-\sqrt{3}}{2}{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}\frac{-\sqrt{3}}{2}{{/formula}}|{{formula}}-\frac{1}{2}{{/formula}}|{{formula}}0{{/formula}}|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}1{{/formula}}|{{formula}}\frac{\sqrt{3}}{2}{{/formula}}|{{formula}}\frac{1}{2}{{/formula}} | ||
11 | (% class="border" %) | ||
12 | |||
13 | [[image:LösungAufgabe7.png]] |