Lösung Fruchgummis
Die Wahrscheinlichkeit für das Ereignis E = "kein gelbes Fruchtgummi" lässt sich z. B. berechnen, in dem die Wahrscheinlichkeit des sog. Gegenereignisses ermittelt und diese schlussendlich von 1 subtrahiert wird:
Die Aussage ist also richtig.
\begin{tikzpicture}[
level distance=3.5cm,
level 1/.style={sibling distance=5cm},
level 2/.style={sibling distance=1.6cm},
edge from parent/.style={draw, -latex},
every node/.style={font=\small}
]
\node {}
child { node {Rot}
edge from parent node[left] {$\frac{7}{17}$}
child { node {Rot} edge from parent node[left] {$\frac{6}{16}$} }
child { node {Grün} edge from parent node[right] {$\frac{1}{16}$} }
child { node {Gelb} edge from parent node[right] {$\frac{3}{16}$} }
child { node {Weiß} edge from parent node[right] {$\frac{2}{16}$} }
}
child { node {Grün}
edge from parent node[left] {$\frac{1}{17}$}
child { node {Rot} edge from parent node[left] {$\frac{7}{16}$} }
child { node {Gelb} edge from parent node[right] {$\frac{3}{16}$} }
child { node {Weiß} edge from parent node[right] {$\frac{2}{16}$} }
}
child { node {Gelb}
edge from parent node[right] {$\frac{3}{17}$}
child { node {Rot} edge from parent node[left] {$\frac{7}{16}$} }
child { node {Grün} edge from parent node[right] {$\frac{1}{16}$} }
child { node {Weiß} edge from parent node[right] {$\frac{2}{16}$} }
}
child { node {Weiß}
edge from parent node[right] {$\frac{2}{17}$}
child { node {Rot} edge from parent node[left] {$\frac{7}{16}$} }
child { node {Grün} edge from parent node[right] {$\frac{1}{16}$} }
child { node {Gelb} edge from parent node[right] {$\frac{3}{16}$} }
};
\end{tikzpicture}