Lösung Fruchgummis

Version 15.1 von Stefan Martin am 2025/12/17 13:34

Die Wahrscheinlichkeit für das Ereignis E = "kein gelbes Fruchtgummi" lässt sich z. B. berechnen, in dem die Wahrscheinlichkeit des sog. Gegenereignisses ermittelt und diese schlussendlich von 1 subtrahiert wird:

\[\begin{aligned} P(E) & = 1-(P(\text{"gelb, gelb"}) + P(\text{"gelb, rot"}) + P(\text{"gelb, weiß"}) + P(\text{"gelb, grün"}) ) \\ & = 1- (313⋅212+2⋅313⋅712+2⋅313⋅212+2⋅313⋅112) \\ & = 1526 \\ \end{aligned}\]

Die Aussage ist also richtig. 

\begin{tikzpicture}[
  level distance=3.5cm,
  level 1/.style={sibling distance=5cm},
  level 2/.style={sibling distance=1.6cm},
  edge from parent/.style={draw, -latex},
  every node/.style={font=\small}
]

\node {}
  child { node {Rot}
    edge from parent node[left] {$\frac{7}{17}$}
    child { node {Rot}   edge from parent node[left] {$\frac{6}{16}$} }
    child { node {Grün}  edge from parent node[right] {$\frac{1}{16}$} }
    child { node {Gelb}  edge from parent node[right] {$\frac{3}{16}$} }
    child { node {Weiß}  edge from parent node[right] {$\frac{2}{16}$} }
  }
  child { node {Grün}
    edge from parent node[left] {$\frac{1}{17}$}
    child { node {Rot}   edge from parent node[left] {$\frac{7}{16}$} }
    child { node {Gelb}  edge from parent node[right] {$\frac{3}{16}$} }
    child { node {Weiß}  edge from parent node[right] {$\frac{2}{16}$} }
  }
  child { node {Gelb}
    edge from parent node[right] {$\frac{3}{17}$}
    child { node {Rot}   edge from parent node[left] {$\frac{7}{16}$} }
    child { node {Grün}  edge from parent node[right] {$\frac{1}{16}$} }
    child { node {Weiß}  edge from parent node[right] {$\frac{2}{16}$} }
  }
  child { node {Weiß}
    edge from parent node[right] {$\frac{2}{17}$}
    child { node {Rot}   edge from parent node[left] {$\frac{7}{16}$} }
    child { node {Grün}  edge from parent node[right] {$\frac{1}{16}$} }
    child { node {Gelb}  edge from parent node[right] {$\frac{3}{16}$} }
  };

\end{tikzpicture}