- \(\overline{AE}\) und \(\overline{CD}\) sind parallel, weil deren beiden Richtungsvektoren Vielfache von einander sind (das heißt linear abhängig sind), da \(\overrightarrow{AE}=\left(\begin{array}{c} 0 \\ 15 \\ 0 \end{array}\right) =3 \cdot \left(\begin{array}{c} 0 \\ 5 \\ 0 \end{array}\right)= 3 \cdot \overrightarrow{CD}\)
\(\overline{CD}\) und \(\overline{DE}\) schließen einen rechten Winkel ein, da das Skalarprodukt ihrer Richtungsvektoren 0 ergibt: \(\overrightarrow{CD}\circ \overrightarrow{DE}=\left(\begin{array}{c} 0 \\ 5 \\ 0 \end{array}\right) \circ \left(\begin{array}{c} -12 \\ 0 \\ -1 \end{array}\right)= (-12)\cdot 0 + 5 \cdot 0 + 0 \cdot 0 = 0\).
2. Ausgehend vom gegebenen Ansatz kann der Inhalt der Rasenfläche berechnet werden. Im Modell kann die Fläche zerlegt werden in ein Rechteck mit den Seitenlängen \(|\overline{AE}|\) und \(|\overline{DE}|\) (blau) sowie ein rechtwinkliges Dreieck, dessen Katheten die Längen \(|\overline{AB}|-|\overline{DE}|\) und \(|\overline{AE}|-|\overline{CD}|\) (gelb) haben.
3. Die Geradengleichung \(g\) lautet \(g: \left(\begin{array}{c} 3,6 \\ 8 \\ 0,3 \end{array}\right) + \lambda \cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) \quad (\lambda \in \mathbb{R})\) und die Geradengleichung \(h\) vom Punkt \(B\) nach \(C\) \(h: \left(\begin{array}{c} 18 \\ 0 \\ 1,5 \end{array}\right) + \mu \cdot \left(\begin{array}{c} -6 \\ 10 \\ -0,5 \end{array}\right) \quad (\mu \in \mathbb{R})\).
Gleichsetzen der beiden Geradengleichungen \(\left(\begin{array}{c} 3,6 \\ 8 \\ 0,3 \end{array}\right) + \lambda \cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) = \left(\begin{array}{c} 18 \\ 0 \\ 1,5 \end{array}\right) + \mu \cdot \left(\begin{array}{c} -6 \\ 10 \\ -0,5 \end{array}\right)\) liefert folgendes Gleichungssystem:
\(5 \cdot \text{I} - 3 \cdot \text{II}\) liefert die Gleichung \(48 \lambda = 48 \Leftrightarrow \lambda = 1\)
Einsetzen von \(\lambda = 1\) in die Geradengleichung \(g\) liefert
\(\left(\begin{array}{c} 3,6 \\ 8 \\ 0,3 \end{array}\right) + 1 \cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) =\left(\begin{array}{c} 15,6 \\ 4 \\ 1,3 \end{array}\right)\)
Somit ergibt sich der Punkt \(Q = (15,6|4|1,3)\)
4.
\(\begin{align}
\cos(\varphi) &= \frac{\Biggl|\left(\begin{array}{c} -6 \\ 10 \\ -0,5 \end{array}\right)\circ \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right)\Biggl|}{\sqrt{(-6)^2+10^2+(-0,5)^2}\cdot \sqrt{12^2+(-4)^2+1^2}} \\
&= \frac{|(-6)\cdot 12+ 10 \cdot (-4)+ (-0,5)\cdot 1|}{\sqrt{136,25}\cdot \sqrt{161}}\\
\Leftrightarrow \varphi &= \cos^{-1}\Bigl(\frac{112,5}{\sqrt{136,25}\cdot \sqrt{161}}\Bigl)
\end{align}\)