Wiki-Quellcode von BPE 12 Einheitsübergreifend
Version 3.1 von Holger Engels am 2023/12/07 08:47
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | {{seiteninhalt/}} | ||
2 | |||
3 | {{aufgabe id="L’Hospital" afb="III" kompetenzen="K2, K4, K5, K6" niveau="p" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA" zeit="30"}} | ||
4 | Im Zusammenhang mit Exponentialfunktionen hast du von deinem Lehrer vielleicht erfahren, dass jede beliebige Exponentialfunktion //f// mit {{formula}} f(x)=a\cdot q^x + b, x \in \mathbb{R}, a,b \in \mathbb{R}, q \in \mathbb{Q}, {{/formula}} „schneller wächst“ als jede beliebige Potenzfunktion //g// mit {{formula}} g(x)= \tilde{a} \cdot x^r + \tilde{b}, x \in \mathbb{R}, \tilde{a},\tilde{b} \in \mathbb{R}, r \in \mathbb{Q} {{/formula}}. | ||
5 | Gemeint ist mit dieser Formulierung: Ab einem bestimmten {{formula}}x{{/formula}}-Wert {{formula}}x_0 {{/formula}} ist {{formula}} f(x)>g(x) {{/formula}} für alle {{formula}}x>x_0 {{/formula}}. | ||
6 | |||
7 | Betrachtet man z. B. die Funktionen {{formula}} f(x) = \frac{1}{30} \cdot 1,01^x{{/formula}} und {{formula}} g(x)= x^{100} {{/formula}}, so scheint dies nicht der Fall zu sein //(vgl. Abbildung)//. | ||
8 | |||
9 | [[image:LhospitalPlot.PNG||width="600"]] | ||
10 | |||
11 | Untersuche, ob Exponentialfunktionen tatsächlich immer „schneller wachsen“ als Potenzfunktionen. | ||
12 | |||
13 | Verwende hierfür ein- oder mehrmalig die Regel von de L’Hospital, die für zwei ableitbare Funktionen //f// und //g// Folgendes besagt: | ||
14 | |||
15 | {{formula}}\lim\limits_{x \rightarrow \infty}\frac{f(x)}{g(x)}= \lim\limits_{x \rightarrow \infty}\frac{f'(x)}{g'(x)}{{/formula}} | ||
16 | |||
17 | (Die Regel setzt man ein, wenn für {{formula}} x \rightarrow \infty{{/formula}} Zähler und Nenner beide gegen 0 oder beide gegen {{formula}}-\infty{{/formula}} oder, wie im Fall dieser Aufgabe, beide gegen {{formula}}+\infty {{/formula}} gehen.) | ||
18 | |||
19 | //Für die Aufgabe nicht benötigte Zusatzbemerkung: Die Regel gilt auch für {{formula}} x \rightarrow -\infty{{/formula}} und für {{formula}} x \rightarrow x_0, x_0 \in \mathbb{R}{{/formula}}.// | ||
20 | {{/aufgabe}} | ||
21 | |||
22 | {{seitenreflexion/}} |