Änderungen von Dokument Lösung Aufgabe 1
Zuletzt geändert von akukin am 2024/12/28 17:35
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -42,8 +42,14 @@ 42 42 Flächeninhalt des gesamten Dreiecks {{formula}}PSW{{/formula}}: {{formula}}A_g=\frac{1}{2}\cdot\left|\overrightarrow{SP}\right|\cdot\left|\overrightarrow{SO}\right|=\frac{1}{2}\cdot1\cdot\frac{4}{3}=\frac{2}{3}{{/formula}} 43 43 </p><p> 44 44 Flächeninhalt des Teils des Dreiecks {{formula}}PSW{{/formula}}, der unterhalb von {{formula}}K{{/formula}} liegt: 45 -{{formula}}A_u=\int_{0}^{2}{f(x)\mathrm{d} x}-A_{\mathrm{\Delta}_{OWS} } 46 -=\int_{0}^{2}{\left(\frac{1}{12}x^4-\frac{1}{3}x^3+\frac{4}{3}\right)\mathrm{d} x}-\frac{1}{2}\cdot2\cdot\frac{4}{3}=\left[\frac{1}{60}x^5-\frac{1}{12}x^4+\frac{4}{3}x\right]_0^2-\frac{4}{3}=\frac{28}{15}-\frac{4}{3}=\frac{8}{15}{{/formula}} 45 + 46 +{{formula}} 47 +\begin{align*} 48 +A_u &=\int_{0}^{2}{f(x)\mathrm{d} x}-A_{\mathrm{\Delta}_{OWS} } \\ 49 +&=\int_{0}^{2}{\left(\frac{1}{12}x^4-\frac{1}{3}x^3+\frac{4}{3}\right)\mathrm{d} x}-\frac{1}{2}\cdot2\cdot\frac{4}{3}=\left[\frac{1}{60}x^5-\frac{1}{12}x^4+\frac{4}{3}x\right]_0^2-\frac{4}{3}=\frac{28}{15}-\frac{4}{3}=\frac{8}{15} 50 +\end{align*} 51 +{{/formula}} 52 + 47 47 </p> 48 48 Flächeninhalt des oberen Teils des Dreiecks {{formula}}PSW{{/formula}}: {{formula}}A_o=A_g-A_u=\frac{2}{15}{{/formula}} 49 49 {{/detail}}
- 1e)Hinweis1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +61.9 KB - Inhalt