Zuletzt geändert von akukin am 2025/12/27 16:09

Verstecke letzte Bearbeiter
akukin 3.1 1 {{abiaufgabe id="Stochastik 4_1" bes="5"}}
akukin 1.1 2 Bei einem Glücksspiel wird ein Pfeil auf die in Abbildung 1 dargestellte Scheibe geworfen. Es wird angenommen, dass jeder Pfeil die Scheibe trifft. Die Skalierung gibt den Radius der einzelnen Kreise (in Längeneinheiten) an.
akukin 3.1 3 [[image:Abb.1.png||width="300" style="display:block;margin-left:auto;margin-right:auto"]]
akukin 1.1 4 Man trifft die unterschiedlich gefärbten Bereiche auf der Scheibe mit den folgenden Wahrscheinlichkeiten:
5 (% class="border slim" style="margin-left: auto; margin-right: auto;" %)
6 |rot|blau|grün
7 |{{formula}} \frac{1}{16} {{/formula}}|{{formula}} \frac{3}{16} {{/formula}}|{{formula}} \frac{12}{16} {{/formula}}
8
9 (%class=abc%)
10 1. ((({{be}}2{{/be}} Für das Glücksspiel gelten folgende Regeln:
11 * Ein Spieler bezahlt einen Einsatz von {{formula}} a {{/formula}} Euro.
12 * Je nach getroffener Farbe erhält der Spieler folgende Auszahlung:
13
14 (% class="border slim" style="margin-left: auto; margin-right: auto;" %)
15 | Getroffene Farbe | Auszahlung
16 | rot | 6 Euro
17 | blau | 2 Euro
18 | grün | 1 Euro
19
20 Berechne den maximalen Einsatz {{formula}} a {{/formula}}, sodass der Spieler auf lange Sicht keinen Verlust macht.)))
21 1. {{be}}3{{/be}} (((Der Flächeninhalt eines Kreises mit Radius {{formula}} r {{/formula}} beträgt {{formula}} \pi \cdot r^{2} {{/formula}}. Zeige, dass die oben gegebenen Wahrscheinlichkeiten dem Flächenanteil des jeweiligen Bereichs an der gesamten Kreisfläche entsprechen.)))
22 {{/abiaufgabe}}
23
24 (%class="border slim"%)
25 |=(%rowspan=2%)Aufgabe|=(%rowspan=2%)BE|=(%colspan=6%)Allgemeine mathematische Kompetenzen|=(%colspan=3%)Anforderungsbereich
26 |=K1|=K2|=K3|=K4|=K5|=K6|=I|=II|=III
27 |a|2| | | | | | |2||
28 |b|3| | | | | | ||3|
29
akukin 3.1 30 {{abiaufgabe id="Lineare Algebra 4_2" bes="5"}}
akukin 1.1 31 Gegeben sind die Punkte {{formula}} A(4 | 2 | -\!3) {{/formula}}, {{formula}} B(3|0|-\!1) {{/formula}} und die Gerade {{formula}} g {{/formula}}, wobei {{formula}} g:\vec{x}=\left(\begin{matrix}3\\0\\-1\end{matrix}\right)
32 +r\cdot\begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix}
33 , \ r\in \mathbb{R} {{/formula}}.
34
35 (%class=abc%)
36 1. {{be}}3{{/be}} Zeige, dass der Abstand vom Punkt {{formula}} A {{/formula}} zur Geraden {{formula}} g {{/formula}} der Länge des Vektors {{formula}} \overrightarrow{AB} {{/formula}} entspricht.
37 1. {{be}}2{{/be}} Ermittle die Koordinaten eines weiteren Punktes {{formula}} C {{/formula}}, der den gleichen Abstand zur Geraden {{formula}} g {{/formula}} hat wie der Punkt {{formula}} A {{/formula}}.
38
39 (%class="border slim"%)
40 |=(%rowspan=2%)Aufgabe|=(%rowspan=2%)BE|=(%colspan=6%)Allgemeine mathematische Kompetenzen|=(%colspan=3%)Anforderungsbereich
41 |=K1|=K2|=K3|=K4|=K5|=K6|=I|=II|=III
42 |a|3| | | | | | |1|2|
43 |b|2| | | | | | |1|1|