Wiki-Quellcode von Lösung Gleichungen grafisch lösen
Version 12.1 von Martin Stern am 2024/10/15 09:40
Verstecke letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
![]() |
1.1 | 1 | c) {{formula}}f(x)=g(x){{/formula}} // |
2 | {{formula}}\sqrt{-x+1}=-\sqrt{x+5}+3{{/formula}} // | ||
3 | {{formula}}-x+1=x+5-2\cdot 3\cdot\sqrt{x+5}+9{{/formula}} // | ||
4 | {{formula}}-2x-13=-6\sqrt{x+5}{{/formula}} // | ||
![]() |
2.1 | 5 | {{formula}}(-2x-13)^2=36(x+5){{/formula}} // |
6 | {{formula}}4x^2+52x+169=36x+180{{/formula}} // | ||
7 | {{formula}}4x^2+16x-11=0{{/formula}} // | ||
![]() |
4.1 | 8 | {{formula}}x_{1,2}=\frac{-16\pm\sqrt{16^2-4\cdot4\cdot(-11)}}{8}{{/formula}} // |
![]() |
7.1 | 9 | {{formula}}x_{1,2}=\frac{-16\pm\sqrt{432}}{8}{{/formula}} // |
![]() |
8.1 | 10 | {{formula}}x_{1,2}=-2\pm\frac{3}{2}\sqrt{3}{{/formula}} // |
![]() |
3.1 | 11 | |
![]() |
9.1 | 12 | {{formula}}f(x_1)=g(x_1)\approx 0,634{{/formula}} // |
![]() |
10.1 | 13 | {{formula}}f(x_2)=g(x_2)\approx 2,366{{/formula}} // |
![]() |
11.1 | 14 | |
![]() |
12.1 | 15 | Die beiden Funktionsgraphen K_f und K_g schneiden sich in {{formula}}S_1(-2+\frac{3}{2}\sqrt{3}|0,634){{/formula}} und {{formula}}S_2(-2-\frac{3}{2}\sqrt{3}|2,366){{/formula}}. |