Version 30.1 von Holger Engels am 2024/10/15 13:34

Zeige letzte Bearbeiter
1 a) {{formula}}D_f = ]-\infty; 1]{{/formula}}, {{formula}}W_f = \mathbb{R}_+{{/formula}} und {{formula}}D_g = [-5; \infty[{{/formula}}, {{formula}}W_g = ]-\infty;3]{{/formula}}
2 b)
3 [[image:Einheits2.png||width="400"]]
4
5 c)
6 Sei {{formula}}f(x)=\sqrt{-x+1}{{/formula}} und {{formula}}g(x)=-\sqrt{x+5}+3{{/formula}}. Das Schaubild von {{formula}}f{{/formula}} sei {{formula}}K_f{{/formula}}, das Schaubild von {{formula}}g{{/formula}} sei {{formula}}K_g{{/formula}}. Man liest in der Zeichnung die x-Werte an den Stellen ab, an denen sich die Funktionsgraphen {{formula}}K_f{{/formula}} und {{formula}}K_g{{/formula}} schneiden. Diese x-Werte sind dann die Lösungen der gegebenen Wurzelgleichung.
7
8 d)
9 {{formula}}\sqrt{-x+1}=-\sqrt{x+5}+3{{/formula}} //
10 {{formula}}-x+1=x+5-2\cdot 3\cdot\sqrt{x+5}+9{{/formula}} //
11 {{formula}}-2x-13=-6\sqrt{x+5}{{/formula}} //
12 {{formula}}(-2x-13)^2=36(x+5){{/formula}} //
13 {{formula}}4x^2+52x+169=36x+180{{/formula}} //
14 {{formula}}4x^2+16x-11=0{{/formula}} //
15 {{formula}}x_{1,2}=\frac{-16\pm\sqrt{16^2-4\cdot4\cdot(-11)}}{8}{{/formula}} //
16 {{formula}}x_{1,2}=\frac{-16\pm\sqrt{432}}{8}{{/formula}} //
17 {{formula}}x_{1,2}=-2\pm\frac{3}{2}\sqrt{3}{{/formula}} //
18
19 {{formula}}x_1=-2-\frac{3}{2}\sqrt{3}{{/formula}} //
20 {{formula}}x_2=-2+\frac{3}{2}\sqrt{3}{{/formula}} //
21
22 Die beiden Funktionsgraphen {{formula}}K_f{{/formula}} und {{formula}}K_g{{/formula}} schneiden sich an den Stellen {{formula}}x_1=-2-\frac{3}{2}\sqrt{3}{{/formula}} und {{formula}}x_2=-2+\frac{3}{2}\sqrt{3}{{/formula}}.