Wiki-Quellcode von Lösung Gleichungen grafisch lösen
Version 30.1 von Holger Engels am 2024/10/15 13:34
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | a) {{formula}}D_f = ]-\infty; 1]{{/formula}}, {{formula}}W_f = \mathbb{R}_+{{/formula}} und {{formula}}D_g = [-5; \infty[{{/formula}}, {{formula}}W_g = ]-\infty;3]{{/formula}} | ||
2 | b) | ||
3 | [[image:Einheits2.png||width="400"]] | ||
4 | |||
5 | c) | ||
6 | Sei {{formula}}f(x)=\sqrt{-x+1}{{/formula}} und {{formula}}g(x)=-\sqrt{x+5}+3{{/formula}}. Das Schaubild von {{formula}}f{{/formula}} sei {{formula}}K_f{{/formula}}, das Schaubild von {{formula}}g{{/formula}} sei {{formula}}K_g{{/formula}}. Man liest in der Zeichnung die x-Werte an den Stellen ab, an denen sich die Funktionsgraphen {{formula}}K_f{{/formula}} und {{formula}}K_g{{/formula}} schneiden. Diese x-Werte sind dann die Lösungen der gegebenen Wurzelgleichung. | ||
7 | |||
8 | d) | ||
9 | {{formula}}\sqrt{-x+1}=-\sqrt{x+5}+3{{/formula}} // | ||
10 | {{formula}}-x+1=x+5-2\cdot 3\cdot\sqrt{x+5}+9{{/formula}} // | ||
11 | {{formula}}-2x-13=-6\sqrt{x+5}{{/formula}} // | ||
12 | {{formula}}(-2x-13)^2=36(x+5){{/formula}} // | ||
13 | {{formula}}4x^2+52x+169=36x+180{{/formula}} // | ||
14 | {{formula}}4x^2+16x-11=0{{/formula}} // | ||
15 | {{formula}}x_{1,2}=\frac{-16\pm\sqrt{16^2-4\cdot4\cdot(-11)}}{8}{{/formula}} // | ||
16 | {{formula}}x_{1,2}=\frac{-16\pm\sqrt{432}}{8}{{/formula}} // | ||
17 | {{formula}}x_{1,2}=-2\pm\frac{3}{2}\sqrt{3}{{/formula}} // | ||
18 | |||
19 | {{formula}}x_1=-2-\frac{3}{2}\sqrt{3}{{/formula}} // | ||
20 | {{formula}}x_2=-2+\frac{3}{2}\sqrt{3}{{/formula}} // | ||
21 | |||
22 | Die beiden Funktionsgraphen {{formula}}K_f{{/formula}} und {{formula}}K_g{{/formula}} schneiden sich an den Stellen {{formula}}x_1=-2-\frac{3}{2}\sqrt{3}{{/formula}} und {{formula}}x_2=-2+\frac{3}{2}\sqrt{3}{{/formula}}. |