Wiki-Quellcode von Lösung Eigenschaften
Version 14.1 von Joachim Rapp am 2023/11/08 14:56
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | a) | ||
| 2 | {{formula}}f(x)=\frac{1}{2}(x+2)^4+3{{/formula}} | ||
| 3 | (1) Globaler Verlauf: | ||
| 4 | Für {{formula}}x\rightarrow + \infty{{/formula}} gilt: {{formula}}f(x)\rightarrow + \infty{{/formula}} | ||
| 5 | Für {{formula}}x\rightarrow - \infty{{/formula}} gilt: {{formula}}f(x)\rightarrow + \infty{{/formula}} | ||
| 6 | |||
| 7 | (2) Symmetrie: | ||
| 8 | Achsensymmetrie zu {{formula}}x=-2{{/formula}} | ||
| 9 | |||
| 10 | (3) Definitionsmenge: | ||
| 11 | {{formula}}D_f=\mathbb R{{/formula}} | ||
| 12 | |||
| 13 | (4) Wertemenge: | ||
| 14 | {{formula}}W_f=\{x\in\mathbb R|x\geq 3\}{{/formula}} | ||
| 15 | |||
| 16 | (5) keine Asymptote | ||
| 17 | |||
| 18 | |||
| 19 | b) | ||
| 20 | |||
| 21 | [[image:geogebra-export.png]] | ||
| 22 | |||
| 23 | |||
| 24 | (1) Globaler Verlauf: | ||
| 25 | Für {{formula}}x\rightarrow + \infty{{/formula}} gilt: {{formula}}f(x)\rightarrow + 4{{/formula}} | ||
| 26 | Für {{formula}}x\rightarrow - \infty{{/formula}} gilt: {{formula}}f(x)\rightarrow + 4{{/formula}} | ||
| 27 | |||
| 28 | (2) Keine Symmetrie zu Achsen oder Ursprung | ||
| 29 | |||
| 30 | (3) Definitionsmenge: | ||
| 31 | {{formula}}D_h=\mathbb R\backslash\{2\}\{{/formula}} | ||
| 32 | |||
| 33 | (4) Wertemenge: | ||
| 34 | {{formula}}W_h=\mathbb R\backslash\{4\}\{{/formula}} | ||
| 35 | |||
| 36 | (5) Asymptoten: | ||
| 37 | Senkrechte Asymptote: {{formula}}x=2{{/formula}} | ||
| 38 | Waagrechte Asymptote: {{formula}}y=4{{/formula}} |