Änderungen von Dokument Lösung Erkunden (eine Potenzfunktion) - Wertetabelle
Zuletzt geändert von Holger Engels am 2024/12/12 19:45
Von Version 4.2
bearbeitet von Tina Müller
am 2024/10/15 11:28
am 2024/10/15 11:28
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 1.2
bearbeitet von Tina Müller
am 2024/10/15 10:36
am 2024/10/15 10:36
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,32 +1,28 @@ 1 +Untersuche die Funktion //f// mit {{formula}}f(x)=\frac{1}{x}{{/formula}} und Definitionsbereich {{formula}}\mathbb{R}^*{{/formula}} im Hinblick auf ihr Randverhalten und ihre Wertemenge. Ergänze dafür zunächst folgende Wertetabellen. 2 + 1 1 (% style="list-style: alphastyle" %) 2 2 1. (((Randverhalten: Verhalten im Unendlichen 3 3 1) Verhalten gegen plus Unendlich ({{formula}}+\infty{{/formula}}) 4 4 (% class="border" %) 5 -|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+1000{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}}|{{formula}}+10^{+\infty}{{/formula}} 7 +|={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+10{{/formula}}| {{formula}}+100{{/formula}}| {{formula}}+1000{{/formula}}| {{formula}}+10^6{{/formula}}| {{formula}}+10^9{{/formula}}| {{formula}}+10^{12}{{/formula}}|({{formula}}+10^{+\infty}{{/formula}}) 6 6 |={{formula}}f(x){{/formula}}|1|{{formula}}\frac{1}{10}{{/formula}}|{{formula}}\frac{1}{100}{{/formula}}|{{formula}}\frac{1}{1000}{{/formula}}|{{formula}}\frac{1}{1000000}{{/formula}}|{{formula}}\frac{1}{1000000000}{{/formula}}|{{formula}}\frac{1}{1000000000000}{{/formula}}|0 7 7 8 8 2) Verhalten gegen minus Unendlich ({{formula}}-\infty{{/formula}}) 9 9 (% class="border" %) 10 -|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}}| {{formula}}-10^{-\infty}{{/formula}}11 -|={{formula}}f(x){{/formula}}| {{formula}}-1{{/formula}}|{{formula}}-\frac{1}{10}{{/formula}}|{{formula}}-\frac{1}{100}{{/formula}}|{{formula}}-\frac{1}{1000}{{/formula}}|{{formula}}-\frac{1}{1000000}{{/formula}}|{{formula}}\frac{1}{1000000000}{{/formula}}|{{formula}}\frac{1}{1000000000000}{{/formula}}|012 +|={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-10{{/formula}}| {{formula}}-100{{/formula}}| {{formula}}-1000{{/formula}}| {{formula}}-10^6{{/formula}}| {{formula}}-10^9{{/formula}}|{{formula}}-10^{12}{{/formula}}| 13 +|={{formula}}f(x){{/formula}}||{{formula}}-1{{/formula}}|{{formula}}-\frac{1}{100}{{/formula}}|{{formula}}-\frac{1}{1000}{{/formula}}|{{formula}}-\frac{1}{1000000}{{/formula}}|{{formula}}\frac{1}{1000000000}{{/formula}}|{{formula}}\frac{1}{1000000000000}{{/formula}}|0 12 12 ))) 13 13 1. (((Randverhalten: Verhalten nahe der Definitionslücke ({{formula}}x \approx 0{{/formula}}) 14 14 1) Verhalten links bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x<0{{/formula}}) 15 15 (% class="border" %) 16 16 |={{formula}}x{{/formula}}| {{formula}}-1{{/formula}}| {{formula}}-0,1{{/formula}}| {{formula}}-0,01{{/formula}}| {{formula}}-0,001{{/formula}}| {{formula}}-10^{-6}{{/formula}}| {{formula}}-10^{-9}{{/formula}}| {{formula}}-10^{-12}{{/formula}}|0 17 -|={{formula}}f(x){{/formula}}| {{formula}}-1{{/formula}}|{{formula}}-10{{/formula}}|{{formula}}-100{{/formula}}|{{formula}}-1000{{/formula}}|{{formula}}-10^6{{/formula}}|{{formula}}-10^9{{/formula}}|{{formula}}-10^{-12}{{/formula}}|{{formula}}-\infty{{/formula}}19 +|={{formula}}f(x){{/formula}}|||||||| 18 18 19 19 2) Verhalten rechts bei der Definitionslücke ({{formula}}x \approx 0{{/formula}} mit {{formula}}x>0{{/formula}}) 20 20 (% class="border" %) 21 21 |={{formula}}x{{/formula}}| {{formula}}+1{{/formula}}| {{formula}}+0,1{{/formula}}| {{formula}}+0,01{{/formula}}| {{formula}}+0,001{{/formula}}| {{formula}}+10^{-6}{{/formula}}| {{formula}}+10^{-9}{{/formula}}| {{formula}}+10^{-12}{{/formula}}|0 22 -|={{formula}}f(x){{/formula}}| {{formula}}1{{/formula}}|{{formula}}10{{/formula}}|{{formula}}100{{/formula}}|{{formula}}1000{{/formula}}|{{formula}}10^6{{/formula}}|{{formula}}10^9{{/formula}}|{{formula}}10^{-12}{{/formula}}|{{formula}}\infty{{/formula}}24 +|={{formula}}f(x){{/formula}}|||||||| 23 23 ))) 24 24 1. Erkennst du eine Symmetrie? 25 -Die Funktion {{formula}} f(x) = \frac{1}{x} {{/formula}} ist punktsymmetrisch zur Ursprungsgeraden, da gilt: 26 -{{formula}} 27 -f(-x) = -f(x) 28 -{{/formula}} 29 -Das bedeutet, dass die Funktion eine Symmetrie bezüglich des Ursprungs hat. 30 - 31 31 1. Beschreibe das Randverhalten der Funktion und nenne ihre Wertemenge. 32 32 1. Bestimme {{formula}}g(y){{/formula}} für {{formula}}y=g(x){{/formula}} und {{formula}}x\in \mathbb{R}^*{{/formula}}.