Änderungen von Dokument BPE 2.2 Transformationen
Zuletzt geändert von Martin Rathgeb am 2025/02/23 18:53
Von Version 82.2
bearbeitet von Holger Engels
am 2024/11/28 20:44
am 2024/11/28 20:44
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 85.1
bearbeitet von Niklas Wunder
am 2024/12/17 14:13
am 2024/12/17 14:13
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.niklaswunder - Inhalt
-
... ... @@ -37,19 +37,25 @@ 37 37 {{/aufgabe}} 38 38 39 39 {{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder" zeit="12" cc="BY-SA"}} 40 -Neben der Spiegelung an der x- und y- Achse kann man auch an der ersten Winkelhalbierenden (gegeben durch y=x) eine Funktion spiegeln. Dazunimmt man dieFunktionsgleichung,z.B.{{formula}}y=x^2{{/formula}} mit {{formula}}x>0{{/formula}}, löst diese nach x auf und vertauscht anschließend die Variablen so erhält man die gespiegelte Funktion.40 +Neben der Spiegelung an der x- und y- Achse kann man auch an der ersten Winkelhalbierenden (gegeben durch y=x) einen Funktionsgraphen spiegeln. Für alle Funktionen schränkt man den Definitionsbereich auf {{formula}}x> 0{{/formula}} ein. Wieso dies sinnvoll ist wird später klar. Um die Funktionsgleichung nach Spiegelung rechnerisch zu ermitteln nimmt man die Funktionsgleichung, z.B. {{formula}} y=x^2{{/formula}}, löst diese nach x auf und vertauscht anschließend die Variablen so erhält man den gespiegelten Funktionsgraphen mit passender Funktionsgleichung. 41 41 42 42 {{formula}} 43 43 \begin{align*} 44 -y=x^2 \;\; | \,\sqrt{\phantomtext\\ 45 -x=\sqrt{y}\;\; |\, \text{ Tausche x und y aus}\\ 44 +y=x^2 \;\; | \,\sqrt{\phantomtext}\\ 45 +x=\sqrt{y}\;\; 46 +{{/formula}} 47 +Vertausche x und y miteinander um die Funktionsgleichung des gespiegelten Funktionsgraphens zu erhalten. 48 +{{formula}} 46 46 y=\sqrt{x} 47 47 \end{align*} 48 48 {{/formula}} 49 49 50 50 (% class="abc" %) 51 -1. Bestimme die an der ersten Winkelhabierenden gespiegelten Funktionen {{formula}} f(x)=\frac{1}{x}; g(x)= \frac{1}{x^2} {{/formula}} und {{formula}} h(x)= \frac{2\,x+3}{-4\,x-2}{{/formula}} 54 +1. Bestimme die an der ersten Winkelhabierenden gespiegelten Funktionen {{formula}} f(x)=\frac{1}{x}; g(x)= \frac{1}{x^2} {{/formula}} und {{formula}} h(x)= \frac{2\,x+3}{-4\,x-2}{{/formula}}. Hinweis: {{formula}}x >0{{/formula}} 52 52 1. Bestimme graphisch den an der ersten Winkelhalbierenden gespiegelten Graphen zu den drei dargestellten Graphen. 56 +1. Die in a) berechneten Funktionen nennt man auch Umkehrfunktionen (Abkürzung {{formula}} f^{-1}{{/formula}} ) . Berechne den Funktionsterm {{formula}} f^{-1}(f(x)){{/formula}}. Beschreibe deine Beobachtung. Hinweis: Setze dazu den Term der Funktionsgleichung f(x) in die in a) berechnete Umkehrfunktion {{formula}} f^{-1}{{/formula}} ein und fasse zusammen. 57 +1.Begründe mit Hilfe deiner Lösungen von a) und b) wieso der Definitionsbereich der Funktion {{formula}} f 58 +{{/formula}} verkleinert werden muss, wenn man die Funktionsgleichung der Umkehrfunktion berechnet. 53 53 54 54 [[image:Einheitsuebergreifend2.png||width="400px"]] 55 55 {{/aufgabe}}