Änderungen von Dokument BPE 2.2 Transformationen

Zuletzt geändert von Martin Rathgeb am 2025/02/23 18:53

Von Version 82.2
bearbeitet von Holger Engels
am 2024/11/28 20:44
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 93.1
bearbeitet von Martin Rathgeb
am 2024/12/18 12:04
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.martinrathgeb
Inhalt
... ... @@ -30,31 +30,12 @@
30 30  {{/aufgabe}}
31 31  
32 32  {{aufgabe id="Funktionsterme nach Transformationen bestimmen" afb="II" kompetenzen="K4" quelle="Martin Stern" zeit="8" cc="BY-SA"}}
33 -Bestimme jeweils einen passenden Funktionsterm.
34 -
35 -a) Der Graph von {{formula}}K_f{{/formula}} entsteht aus dem Graphen {{formula}}f(x)=\frac{1}{x}{{/formula}} durch Spiegelung an der x-Achse, Streckung mit dem Faktor 2 in y-Richtung sowie durch Verschiebung um 1 nach rechts und um 3 nach oben.\\
36 -b) Der Graph von {{formula}}K_f{{/formula}} entsteht aus dem Graphen {{formula}}f(x)=\frac{1}{x}{{/formula}} durch Verschiebung um 1 nach rechts und um 3 nach oben, Streckung mit dem Faktor 2 in y-Richtung sowie Spiegelung an der x-Achse.\\
37 -{{/aufgabe}}
38 -
39 -{{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder" zeit="12" cc="BY-SA"}}
40 -Neben der Spiegelung an der x- und y- Achse kann man auch an der ersten Winkelhalbierenden (gegeben durch y=x) eine Funktion spiegeln. Dazu nimmt man die Funktionsgleichung, z.B. {{formula}} y=x^2{{/formula}} mit {{formula}}x> 0{{/formula}}, löst diese nach x auf und vertauscht anschließend die Variablen so erhält man die gespiegelte Funktion.
41 -
42 -{{formula}}
43 -\begin{align*}
44 -y=x^2 \;\; | \,\sqrt{\phantomtext\\
45 -x=\sqrt{y}\;\; |\, \text{ Tausche x und y aus}\\
46 -y=\sqrt{x}
47 -\end{align*}
48 -{{/formula}}
49 -
33 +Gegeben ist die Funktion {{formula}}f{{/formula}} mit {{formula}}f(x)=\frac{1}{x}{{/formula}}. Bestimme die Funktionsgleichung der Funktion {{formula}}g{{/formula}}.
50 50  (% class="abc" %)
51 -1. Bestimme die an der ersten Winkelhabierenden gespiegelten Funktionen {{formula}} f(x)=\frac{1}{x}; g(x)= \frac{1}{x^2} {{/formula}} und {{formula}} h(x)= \frac{2\,x+3}{-4\,x-2}{{/formula}}
52 -1. Bestimme graphisch den an der ersten Winkelhalbierenden gespiegelten Graphen zu den drei dargestellten Graphen.
53 -
54 -[[image:Einheitsuebergreifend2.png||width="400px"]]
35 +1. Der Graph von {{formula}}g{{/formula}} entsteht aus dem Graphen von {{formula}}f{{/formula}} durch Spiegelung an der x-Achse, Streckung mit dem Faktor 2 in y-Richtung, Verschiebung um 1 in x-Richtung und Verschiebung um 3 in y-Richtung.
36 +1. Der Graph von {{formula}}g{{/formula}} entsteht aus dem Graphen von {{formula}}f{{/formula}} durch Verschiebung um 1 in x-Richtung, Verschiebung um 3 in y-Richtung, Streckung mit dem Faktor 2 in y-Richtung und Spiegelung an der x-Achse.
55 55  {{/aufgabe}}
56 56  
57 -
58 58  {{lehrende}}
59 59  Mit den ausgewählten Aufgaben sollten alle gefordeten Kompetenzen abgedeckt sein. Die Transformation wird nicht nur mit den drei im BP aufgeführten Funktionen, sondern mit allen möglichen Potenzfunktionen durchgeführt.
60 60  {{/lehrende}}
Einheitsuebergreifend2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.niklaswunder
Größe
... ... @@ -1,1 +1,0 @@
1 -22.7 KB
Inhalt