Wiki-Quellcode von Lösung Funktionsterme nach Transformationen bestimmen
Zuletzt geändert von Martin Rathgeb am 2025/06/03 23:45
Verstecke letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
![]() |
3.1 | 1 | a) {{formula}}g(x)=-\frac{2}{x-1}+3{{/formula}} \\ |
![]() |
4.1 | 2 | b) {{formula}}g(x)=-\frac{2}{x-1}-6{{/formula}} \\ |
3 | c) {{formula}}g(x)=-\frac{2}{x-1}+3{{/formula}} \\ | ||
![]() |
5.1 | 4 | |
5 | (% class="border" style="width:100%" %) | ||
6 | | Schritt | ** Teilaufgabe a)** | ** Teilaufgabe b)** | ** Teilaufgabe c)** | ||
7 | | Startfunktion | {{formula}}f(x) = \frac{1}{x}{{/formula}} | {{formula}}f(x) = \frac{1}{x}{{/formula}} | {{formula}}f(x) = \frac{1}{x}{{/formula}} | ||
8 | | 1. Transformation | {{formula}}f(x) \rightarrow -\frac{1}{x}{{/formula}} | {{formula}}f(x) \rightarrow \frac{1}{x - 1}{{/formula}} | {{formula}}f(x) \rightarrow \frac{1}{x - 1}{{/formula}} | ||
9 | | 2. Transformation | {{formula}}-\frac{1}{x} \rightarrow -\frac{2}{x}{{/formula}} | {{formula}}\frac{1}{x - 1} \rightarrow \frac{1}{x - 1} + 3{{/formula}} | {{formula}}\frac{1}{x - 1} \rightarrow \frac{2}{x - 1}{{/formula}} | ||
10 | | 3. Transformation | {{formula}}-\frac{2}{x} \rightarrow -\frac{2}{x - 1}{{/formula}} | {{formula}}\frac{1}{x - 1} + 3 \rightarrow \frac{2}{x - 1} + 6{{/formula}} | {{formula}}\frac{2}{x - 1} \rightarrow -\frac{2}{x - 1}{{/formula}} | ||
11 | | 4. Transformation | {{formula}}-\frac{2}{x - 1} \rightarrow g(x) = -\frac{2}{x - 1} + 3{{/formula}} | {{formula}}\frac{2}{x - 1} + 6 \rightarrow g(x) = -\frac{2}{x - 1} - 6{{/formula}} | {{formula}}-\frac{2}{x - 1} \rightarrow g(x) = -\frac{2}{x - 1} + 3{{/formula}} |