Änderungen von Dokument BPE 3 Einheitsübergreifend

Zuletzt geändert von Holger Engels am 2025/04/05 14:50

Von Version 32.1
bearbeitet von Martin Stern
am 2024/12/17 17:43
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 33.1
bearbeitet von Martin Stern
am 2024/12/17 17:48
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -4,7 +4,7 @@
4 4  [[image:Arithmagon Polynomfunktion Formen.svg|| width=500]]
5 5  {{/aufgabe}}
6 6  
7 -{{aufgabe id="Fragestellungen zu einer Wertetabelle" afb="II" kompetenzen="K2, K4, K5" quelle="Martina Wagner, Dirk Tebbe, Martin Rathgeb, Martin Stern" zeit="20" cc="by-sa"}}
7 +{{aufgabe id="Fragestellungen zu einer Wertetabelle" afb="II" kompetenzen="K2, K4, K5" quelle="Martina Wagner, Dirk Tebbe, Martin Rathgeb, Martin Stern" zeit="30" cc="by-sa"}}
8 8  Gegeben ist der Ausschnitt einer Wertetabelle einer Funktion 3. Grades
9 9  (% class="border slim" %)
10 10  |{{formula}}x{{/formula}}|-4|-3,5|-3|-2,5|-2|-1,5|-1|-0,5|0
... ... @@ -24,7 +24,7 @@
24 24  {{/aufgabe}}
25 25  
26 26  {{aufgabe id="Kosten- und Erlösfunktion" afb="II" kompetenzen="K2, K4, K5" quelle="Martina Wagner, Dirk Tebbe, Martin Rathgeb, Martin Stern" zeit="20" cc="by-sa"}}
27 -Ein Unternehmen bietet seinen Kunden für eine Testphase ein neues Produkt an. Die Gesamtkosten für dieses Produkt können durch die Funktion {{formula}}K{{/formula}} mit {{formula}}K(x)=0,2x^3-x^2+4x+8{{/formula}} beschrieben werden, wobei {{formula}}x{{/formula}} in ME, {{formula}}K{{/formula}} in GE.
27 +Ein Unternehmen bietet seinen Kunden für eine Testphase ein neues Produkt an. Die Gesamtkosten für dieses Produkt können durch die Funktion {{formula}}K{{/formula}} mit {{formula}}K(x)=0,2x^3-x^2+4x+8{{/formula}} beschrieben werden, wobei {{formula}}x{{/formula}} in Mengeneinheiten (ME), {{formula}}K{{/formula}} in Geldeinheiten (GE).
28 28  Der erzielte Erlös ist das Produkt aus dem Verkaufspreis und der Menge und kann mit der Funktion {{formula}}E{{/formula}} mit {{formula}}E(x)=10x{{/formula}} beschrieben werden.
29 29  
30 30  a) Zeichne das Schaubild der Erlös- und Kostenfunktion in ein gemeinsames Koordinatensystem. Markiere die Gewinnzone, d.h. die Produktionsmenge, für die kein Verlust gemacht wird.
... ... @@ -33,7 +33,7 @@
33 33  
34 34  c) Bestimme den maximalen Gewinn.
35 35  
36 -d) Durch Veränderungen im Produktionsprozess verändert sich die Kostenfunktion zu {{formula}}K_neu(x)=1,88x^2-6,90x+15,02{{/formula}}. Die Erlösfunktion {{formula}}E{{/formula}} bleibt unverändert. Überprüfe, ob für diese neue Kostenfunktion {{formula}}K_neu{{/formula}} die Gewinnzone und der maximal erzielbare Gewinn gleich bleiben.
36 +d) Durch Veränderungen im Produktionsprozess verändert sich die Kostenfunktion zu {{formula}}K_{neu}(x)=1,88x^2-6,90x+15,02{{/formula}}. Die Erlösfunktion {{formula}}E{{/formula}} bleibt unverändert. Überprüfe, ob für diese neue Kostenfunktion {{formula}}K_{neu}{{/formula}} die Gewinnzone und der maximal erzielbare Gewinn gleich bleiben.
37 37  {{/aufgabe}}
38 38  
39 39  {{aufgabe id="Nichomachus" afb="III" kompetenzen="K2, K5, K4, K1" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA" zeit="25"}}