Wiki-Quellcode von Lösung Graphen beschreiben und skizzieren
Version 12.1 von Frauke Beckstette am 2025/02/25 14:03
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | {{formula}} f(x)=e^x+2 {{/formula}} | ||
| 2 | verläuft steigend | ||
| 3 | globales Verhalten: | ||
| 4 | wenn {{formula}} x \to -\infty{{/formula}} dann {{formula}} f(x) \to y=2 {{/formula}} | ||
| 5 | wenn {{formula}} x \to \infty{{/formula}} dann {{formula}} f(x) \to \infty {{/formula}} | ||
| 6 | Asymptote: {{formula}} y=2 {{/formula}} | ||
| 7 | Schnittpunkt mit der {{formula}}y{{/formula}}-Achse: {{formula}} S_y(0|3) {{/formula}} | ||
| 8 | [[image:Skizze1.png||width="400"]] | ||
| 9 | |||
| 10 | |||
| 11 | {{formula}} g(x)=e^{-x} - 1,5 {{/formula}} | ||
| 12 | verläuft fallend | ||
| 13 | globales Verhalten: | ||
| 14 | wenn {{formula}} x \to -\infty{{/formula}} dann {{formula}} f(x) \to \infty {{/formula}} | ||
| 15 | wenn {{formula}} x \to \infty{{/formula}} dann {{formula}} f(x) \to y=-1,5 {{/formula}} | ||
| 16 | Asymptote: {{formula}} y=-1,5 {{/formula}} | ||
| 17 | Schnittpunkt mit der {{formula}}y{{/formula}}-Achse: {{formula}} S_y(0|-0,5) {{/formula}} | ||
| 18 | [[image:Skizze2.png||width="400"]] | ||
| 19 | |||
| 20 | |||
| 21 | {{formula}} h(x)=-e^{x+2,5} {{/formula}} | ||
| 22 | verläuft fallend | ||
| 23 | globales Verhalten: | ||
| 24 | wenn {{formula}} x \to -\infty{{/formula}} dann {{formula}} f(x) \to y=0 {{/formula}} | ||
| 25 | wenn {{formula}} x \to \infty{{/formula}} dann {{formula}} f(x) \to -\infty {{/formula}} | ||
| 26 | Asymptote: {{formula}} y=0 {{/formula}} | ||
| 27 | Schnittpunkt mit der {{formula}}y{{/formula}}-Achse: {{formula}} S_y(0|-e^{2,5}) {{/formula}} | ||
| 28 | [[image:Skizze3.png||width="400"]] |