Änderungen von Dokument Lösung Exponentialgleichungen (Logarithmieren)
Zuletzt geändert von Kim Fujan am 2025/05/20 11:11
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -2,20 +2,23 @@ 2 2 1. {{formula}} e^x=3 \quad \left| ln( ) {{/formula}} 3 3 {{formula}} ln(e^x)=ln(3) {{/formula}} 4 4 {{formula}} x=ln(3) {{/formula}} 5 - 5 +{{formula}}\mathbb{L}= \left\{ ln(3) \right\} {{/formula}} 6 6 1. {{formula}} 2e^x-4=8 \quad \left|+4{{/formula}} 7 7 {{formula}} 2e^x=12 \quad \left|:2{{/formula}} 8 8 {{formula}} e^x=6 \quad \left| ln( ) {{/formula}} 9 9 {{formula}} x=ln(6) {{/formula}} 10 - 10 +{{formula}}\mathbb{L}= \left\{ ln(6) \right\} {{/formula}} 11 11 1. {{formula}} 2e^{-0.5x}=6 \quad \left|:2 {{/formula}} 12 12 {{formula}} e^{-0.5x}=3 \quad \left| ln( ) {{/formula}} 13 13 {{formula}} -0.5x=ln(3) \quad \left|\cdot (-2) {{/formula}} 14 14 {{formula}} x=-2 \cdot ln(3) {{/formula}} 15 - 15 +{{formula}}\mathbb{L}= \left\{-2 \cdot ln(3) \right\} {{/formula}} 16 16 1. {{formula}} e^x=-5 \quad \left| ln( ) {{/formula}} 17 17 {{formula}}x=ln(-5){{/formula}} 18 18 keine Lösung! 19 - 20 -1. {{formula}} 4\cdot 5^x=100 {{/formula}} 21 - 19 +{{formula}}\mathbb{L}= \left\{ \right\} {{/formula}} 20 +1. {{formula}} 4\cdot 5^x=100 \quad \left|:4 {{/formula}} 21 +{{formula}} 5^x=25 \quad \left| \text{Exponentenvergleich} {{/formula}} 22 +{{formula}} 5^x=5^2 {{/formula}} 23 +{{formula}} x=2 {{/formula}} 24 +{{formula}}\mathbb{L}= \left\{ 2 \right\} {{/formula}}