Wiki-Quellcode von Lösung Exponentialgleichungen (Logarithmieren)
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | (% class="abc" %) | ||
2 | 1. {{formula}} e^x=3 \quad \left| ln( ) {{/formula}} | ||
3 | {{formula}} ln(e^x)=ln(3) {{/formula}} | ||
4 | {{formula}} x=ln(3) {{/formula}} | ||
5 | {{formula}}\mathbb{L}=\left{ ln(3) \right} {{/formula}} | ||
6 | |||
7 | |||
8 | 1. {{formula}} 2e^x-4=8 \quad \left|+4{{/formula}} | ||
9 | {{formula}} 2e^x=12 \quad \left|:2{{/formula}} | ||
10 | {{formula}} e^x=6 \quad \left| ln( ) {{/formula}} | ||
11 | {{formula}} x=ln(6) {{/formula}} | ||
12 | |||
13 | 1. {{formula}} 2e^{-0.5x}=6 \quad \left|:2 {{/formula}} | ||
14 | {{formula}} e^{-0.5x}=3 \quad \left| ln( ) {{/formula}} | ||
15 | {{formula}} -0.5x=ln(3) \quad \left|\cdot (-2) {{/formula}} | ||
16 | {{formula}} x=-2 \cdot ln(3) {{/formula}} | ||
17 | |||
18 | 1. {{formula}} e^x=-5 \quad \left| ln( ) {{/formula}} | ||
19 | {{formula}}x=ln(-5){{/formula}} | ||
20 | keine Lösung! | ||
21 | |||
22 | 1. {{formula}} 4\cdot 5^x=100 {{/formula}} |