Wiki-Quellcode von Lösung Exponentialgleichungen (Logarithmieren)
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | (% class="abc" %) | ||
| 2 | 1. {{formula}} e^x=3 \quad \left| ln( ) {{/formula}} | ||
| 3 | {{formula}} ln(e^x)=ln(3) {{/formula}} | ||
| 4 | {{formula}} x=ln(3) {{/formula}} | ||
| 5 | {{formula}}\mathbb{L}= \left\{ ln(3) \right\} {{/formula}} | ||
| 6 | |||
| 7 | |||
| 8 | 1. {{formula}} 2e^x-4=8 \quad \left|+4{{/formula}} | ||
| 9 | {{formula}} 2e^x=12 \quad \left|:2{{/formula}} | ||
| 10 | {{formula}} e^x=6 \quad \left| ln( ) {{/formula}} | ||
| 11 | {{formula}} x=ln(6) {{/formula}} | ||
| 12 | {{formula}}\mathbb{L}= \left\{ ln(6) \right\} {{/formula}} | ||
| 13 | |||
| 14 | 1. {{formula}} 2e^{-0.5x}=6 \quad \left|:2 {{/formula}} | ||
| 15 | {{formula}} e^{-0.5x}=3 \quad \left| ln( ) {{/formula}} | ||
| 16 | {{formula}} -0.5x=ln(3) \quad \left|\cdot (-2) {{/formula}} | ||
| 17 | {{formula}} x=-2 \cdot ln(3) {{/formula}} | ||
| 18 | {{formula}}\mathbb{L}= \left\{-2 \cdot ln(3) \right\} {{/formula}} | ||
| 19 | |||
| 20 | 1. {{formula}} e^x=-5 \quad \left| ln( ) {{/formula}} | ||
| 21 | {{formula}}x=ln(-5){{/formula}} | ||
| 22 | keine Lösung! | ||
| 23 | {{formula}}\mathbb{L}= \left\{ \right\} {{/formula}} | ||
| 24 | |||
| 25 | 1. {{formula}} 4\cdot 5^x=100 \quad \left|:4 {{/formula}} | ||
| 26 | {{formula}} 5^x=25 \quad \left| \text{Exponentenvergleich} {{/formula}} | ||
| 27 | {{formula}} 5^x=5^2 {{/formula}} | ||
| 28 | {{formula}} x=5 {{/formula}} |