Lösung Gleichungen gemeinsamer Form

Zuletzt geändert von akukin am 2025/08/11 15:28

  1. \(e^{2x}-4e^x+3=0\)
      
    \(u:=e^x\)
    \(x^{2e}-4x^e+3=0\)
      
    \(u:=x^e\)
    🠗
    \(x^{-2}-4x^{-1}+3=0\)
      
    \(u:=x^{-1}\)
    \(u^2-4u+3=0\)

      
    \(u_{1,2}=\frac{4\pm \sqrt{16-12}}{2}\)

     
    \(u_1=3 \quad;\quad u_2=1\)


    \(e^x:=u\)

    \(x_{1}=ln(3)\)
    \(x_{2}=ln(1)=0\)
      

    🠗
    \(x^e:=u\)

    \(x_{1}=\sqrt[e]{3}\)
    \(x_{2}=\sqrt[e]{1}=1\)
      


    \(x^{-1}:=u\)

    \(x_{1}=\frac{1}{3}\)
    \(x_{2}=1\)
      

  2. \(x^{-2}-3x^{-1}=0\)
      
    \(u:=x^{-1}\)
    \(x^{2e}-3x^e=0\)
      
    \(u:=x^e\)
    🠗
    \(e^{2x}-3e^x=0\)
      
    \(u:=e^x\)
    \(u^2-3u=0\)

      
    \(u\cdot (u-3)=0\)

     
    \(u_1=0 \quad;\quad u_2=3 \)


    \(x^{-1}:=u\)

    \(x_{1}=\frac{1}{3}\)
    keine weitere Lösung
      

    🠗
    \(x^e:=u\)

    \(x_{1}=\sqrt[e]{3}\)
    \(x_{2}=\sqrt[e]{0}=0\)
      


    \(e^x:=u\)

    \(x_{1}=ln(3)\)
    keine weitere Lösung

  3. \(x^{-2}-2x^{-1}+3=0\)
      
    \(u:=x^{-1}\)
    \(x^{2e}-2x^e+3=0\)
      
    \(u:=x^e\)
    🠗
    \(e^{2x}-2e^x+3=0\)
      
    \(u:=e^x\)
    \(u^2-2u+3=0\)

    \(u_{1,2}=\frac{2\pm \sqrt{4-12}}{2}\)
      
    keine Lösungen