Wiki-Quellcode von Lösung Winkel am Einheitskreis
Version 6.1 von Thomas Köhler am 2024/07/18 14:38
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | (% class="border" %) | ||
| 2 | |=Winkel {{formula}}\alpha{{/formula}}|30°|60°|90°|120°|150°|180°|210°|240°|270°|300°|330°|360° | ||
| 3 | |{{formula}}\sin(\alpha){{/formula}}| | ||
| 4 | {{formula}}\frac{1}{2}{{/formula}}| | ||
| 5 | {{formula}}\frac{\sqrt{3}}{2}{{/formula}}| | ||
| 6 | {{formula}}1{{/formula}}| | ||
| 7 | {{formula}}\frac{\sqrt{3}}{2}}{{/formula}}| | ||
| 8 | {{formula}}\frac{1}{2}{{/formula}}| | ||
| 9 | {{formula}}0{{/formula}}| | ||
| 10 | {{formula}}-\frac{1}{2}{{/formula}}| | ||
| 11 | {{formula}}-\frac{\sqrt{3}}{2}}{{/formula}}| | ||
| 12 | {{formula}}-1{{/formula}}| | ||
| 13 | {{formula}}-\frac{\sqrt{3}}{2}}{{/formula}}| | ||
| 14 | {{formula}}-\frac{1}{2}}{{/formula}}| | ||
| 15 | {{formula}}0{{/formula}} | ||
| 16 | |{{formula}}\cos(\alpha){{/formula}}| | ||
| 17 | {{formula}}\frac{\sqrt{3}}{2}{{/formula}}| | ||
| 18 | {{formula}}\frac{1}{2}{{/formula}}| | ||
| 19 | {{formula}}0{{/formula}}| | ||
| 20 | {{formula}}-\frac{1}{2}}{{/formula}}| | ||
| 21 | {{formula}}-\frac{\sqrt{3}}{2}}{{/formula}}| | ||
| 22 | {{formula}}-1{{/formula}}| | ||
| 23 | {{formula}}-\frac{\sqrt{3}}{2}}{{/formula}}| | ||
| 24 | {{formula}}-\frac{1}{2}}{{/formula}}| | ||
| 25 | {{formula}}0{{/formula}}| | ||
| 26 | {{formula}}\frac{1}{2}{{/formula}}| | ||
| 27 | {{formula}}\frac{\sqrt{3}}{2}}{{/formula}}| | ||
| 28 | {{formula}}1{{/formula}} | ||
| 29 | |||
| 30 | |||
| 31 | [[image:Einheitskreis_winkel.png||width=50%]] | ||
| 32 | |||
| 33 | |||
| 34 | |||
| 35 | zu 2. | ||
| 36 | |||
| 37 | {{formula}}\sin(360 + \beta) = \sin(\beta){{/formula}} bzw. {{formula}}\cos(360 + \beta)=\cos(\beta){{/formula}} |