Zuletzt geändert von Holger Engels am 2025/10/14 08:18

Von Version 9.1
bearbeitet von akukin
am 2024/10/20 16:49
Änderungskommentar: Neues Bild Graphen2exp(x)-2.png hochladen
Auf Version 10.2
bearbeitet von Holger Engels
am 2025/10/13 08:20
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.akukin
1 +XWiki.holgerengels
Inhalt
... ... @@ -1,6 +1,6 @@
1 1  [[Kompetenzen.K4]] Ich kann ausgehend vom grafischen Differenzieren, Ableitungen für ausgewählte Funktionen bestimmen
2 2  [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann die Bedeutung der Eulerschen Zahl //e// als besondere Basis bei Exponentialfunktionen zur Berechnung ihrer Ableitung nennen
3 -[[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann die den Zusammenhang von trigonometrischen Funktionen mit ihren Ableitungsfunktionen beschreiben
3 +[[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Zusammenhang von trigonometrischen Funktionen mit ihren Ableitungsfunktionen beschreiben
4 4  
5 5  
6 6  {{aufgabe id="Verschiebung durch Ableiten" afb="" kompetenzen="K1,K2,K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_8.pdf ]]" niveau="e" tags="iqb" cc="by"}}
... ... @@ -14,7 +14,7 @@
14 14  
15 15  {{aufgabe id="Ableitung berechnen und grafisch ermitteln" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_2.pdf]]" niveau="g" tags="iqb" cc="by"}}
16 16  Gegeben sind die in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}g{{/formula}} mit {{formula}}g\left(x\right)=2\cdot e^x-2{{/formula}} und {{formula}}h{{/formula}} mit {{formula}}h\left(x\right)=e^x+1{{/formula}}. Die Abbildung zeigt ihre Graphen.
17 -
17 +[[image:Graphen2exp(x)-2.png||width="180" style="float: right"]]
18 18  1. Die erste Ableitungsfunktion von {{formula}}g{{/formula}} wird mit {{formula}}g^\prime{{/formula}} bezeichnet. Berechne {{formula}}g^\prime\left(0\right){{/formula}} und veranschauliche in der Abbildung, wie man diesen Wert grafisch ermitteln kann.
19 19  1. Beurteile folgende Aussage:
20 20  Es gibt eine Verschiebung in y-Richtung, durch die der Graph von {{formula}}h{{/formula}} aus dem Graphen von {{formula}}g{{/formula}} erzeugt werden kann.