Wiki-Quellcode von BPE 12.2 Ableitungsfunktion und Ableiten
Version 31.2 von Holger Engels am 2025/11/24 20:08
Zeige letzte Bearbeiter
| author | version | line-number | content |
|---|---|---|---|
| 1 | [[Kompetenzen.K4]] Ich kann ausgehend vom grafischen Differenzieren, Ableitungen für ausgewählte Funktionen bestimmen | ||
| 2 | [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann die Bedeutung der Eulerschen Zahl //e// als besondere Basis bei Exponentialfunktionen zur Berechnung ihrer Ableitung nennen | ||
| 3 | [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Zusammenhang von trigonometrischen Funktionen mit ihren Ableitungsfunktionen beschreiben | ||
| 4 | |||
| 5 | {{aufgabe id="eFunktion" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels, Kim Fujan" zeit="7" cc="by-sa" tags=""}} | ||
| 6 | Zeichne den Graphen der e-Funktion {{formula}}f(x)=e^x{{/formula}} im Intervall {{formula}}[-1;3]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an mindestens 5 Stellen. Beschreibe dein Ergebnis und bestimme den Term der Ableitungsfunktion. | ||
| 7 | {{/aufgabe}} | ||
| 8 | |||
| 9 | {{aufgabe id="expFunktion" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels" zeit="7" cc="by-sa" tags=""}} | ||
| 10 | Zeichne den Graphen der e-Funktion {{formula}}f(x)=2^x{{/formula}} im Intervall {{formula}}[-1;3]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an mindestens 5 Stellen. Beschreibe dein Ergebnis. | ||
| 11 | {{/aufgabe}} | ||
| 12 | |||
| 13 | {{aufgabe id="Trigonometrische Funktionen" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels, Kim Fujan" zeit="8" cc="by-sa" tags=""}} | ||
| 14 | Zeichne den Graphen der Sinus-Funktion {{formula}}f(x)=sin(x){{/formula}} im Intervall {{formula}}[-2 \pi;2 \pi]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}}, indem du die Steigungen an geschickt gewählten Stellen aufträgst. Beschreibe dein Ergebnis und bestimme den Term der Ableitungsfunktion. | ||
| 15 | Beschreibe ein analoges Vorgehen für {{formula}}f_2(x)=cos(x){{/formula}} und gib auch den Term für {{formula}}f'_2(x){{/formula}} an. | ||
| 16 | {{/aufgabe}} | ||
| 17 | |||
| 18 | {{aufgabe id="lnFunktion" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels" zeit="7" cc="by-sa" niveau="e"}} | ||
| 19 | Zeichne den Graphen der ln-Funktion {{formula}}f(x)=\ln{x}{{/formula}} im Intervall {{formula}}[0;5]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an den Stellen 1, 2, 3, 4. Für deine Beobachtung ist es hilfreich, wenn du die Tangentensteigungen an diesen Stellen exakt kennst. Sie sind: | ||
| 20 | (%class="border slim"%) | ||
| 21 | |=x|1|2|3|4 | ||
| 22 | |=f'{{{(x)}}}|1|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{1}{3}{{/formula}}|{{formula}}\frac{1}{4}{{/formula}} | ||
| 23 | |||
| 24 | Beschreibe dein Ergebnis und bestimme den Term der Ableitungsfunktion. | ||
| 25 | {{/aufgabe}} | ||
| 26 | |||
| 27 | {{aufgabe id="Verschiebung durch Ableiten" afb="III" kompetenzen="K1,K2,K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_8.pdf ]]" niveau="e" tags="iqb" cc="by"}} | ||
| 28 | Die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f{{/formula}} hat die erste Ableitungsfunktion {{formula}}f^\prime{{/formula}} mit {{formula}}f^\prime\left(x\right)=2\cdot e^{2x}{{/formula}} und es gilt {{formula}}f\left(0\right)=1{{/formula}}. | ||
| 29 | |||
| 30 | Leitet man die erste Ableitungsfunktion {{formula}}f^\prime{{/formula}} ab, so erhält man die zweite Ableitungsfunktion {{formula}}f^{\prime\prime}{{/formula}} von {{formula}}f{{/formula}}. Entsprechend entsteht die hundertste Ableitung {{formula}}f^{\left(100\right)}{{/formula}} von {{formula}}f{{/formula}}. Der Graph der hundersten Ableitungsfunktion {{formula}}f^{\left(100\right)}{{/formula}} lässt sich aus dem Graphen von {{formula}}f{{/formula}} durch eine Verschiebung in x-Richtung erzeugen. | ||
| 31 | |||
| 32 | Ermittle, um wie viele Einheiten der Graph von {{formula}}f{{/formula}} dazu in x-Richtung zu verschieben ist. | ||
| 33 | {{/aufgabe}} | ||
| 34 | |||
| 35 | {{aufgabe id="Ableitung berechnen und grafisch ermitteln" afb="II" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_2.pdf]]" niveau="g" tags="iqb" cc="by"}} | ||
| 36 | Gegeben sind die in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}g{{/formula}} mit {{formula}}g\left(x\right)=2\cdot e^x-2{{/formula}} und {{formula}}h{{/formula}} mit {{formula}}h\left(x\right)=e^x+1{{/formula}}. Die Abbildung zeigt ihre Graphen. | ||
| 37 | [[image:Graphen2exp(x)-2.png||width="180" style="float: right"]] | ||
| 38 | 1. Die erste Ableitungsfunktion von {{formula}}g{{/formula}} wird mit {{formula}}g^\prime{{/formula}} bezeichnet. Berechne {{formula}}g^\prime\left(0\right){{/formula}} und veranschauliche in der Abbildung, wie man diesen Wert grafisch ermitteln kann. | ||
| 39 | 1. Beurteile folgende Aussage: | ||
| 40 | Es gibt eine Verschiebung in y-Richtung, durch die der Graph von {{formula}}h{{/formula}} aus dem Graphen von {{formula}}g{{/formula}} erzeugt werden kann. | ||
| 41 | {{/aufgabe}} | ||
| 42 | |||
| 43 | {{seitenreflexion bildungsplan="5" kompetenzen="4" anforderungsbereiche="5" kriterien="4" menge="5"/}} |