Version 35.1 von Martin Rathgeb am 2025/01/04 23:05

Zeige letzte Bearbeiter
1 [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen anwenden
2 [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen kombinieren
3
4 {{aufgabe id="Ableitungsregeln entdecken und begründen" afb="III" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="35"}}
5 Gegeben sind eine reelle Zahl //a// sowie zwei lineare Funktionen {{formula}}f_i{{/formula}} mit {{formula}}f_i(x)=m_i x+b_i{{/formula}} für {{formula}}i=1,2{{/formula}}.
6 (% class="abc" %)
7 1. (((Ermittle rechnerisch (mittels Definition der Verknüpfung bzw. Verkettung) die Hauptform der folgenden zusammengesetzten Funktionen:
8 1. Summenfunktion {{formula}}f=f_1 + f_2{{/formula}}
9 1. Vielfachenfunktion {{formula}}f=a \cdot f_1{{/formula}}
10 1. Produktfunktion {{formula}}f=f_1\cdot f_2{{/formula}}.
11 1. Verkettung {{formula}}f=f_2\circ f_1{{/formula}}.
12
13 )))
14 1. Ermittle rechnerisch (mittels Definition des Differenzialquotienten) aus der Hauptform von //f// die Hauptform der ersten Ableitung //f'// von //f//.
15 1. (((Zeige, dass sich //f'// folgendermaßen schreiben lässt:
16 1. Summenfunktion {{formula}}f'=f_1' + f_2'{{/formula}}
17 1. Vielfachenfunktion {{formula}}f'=a \cdot f_1'{{/formula}}
18 1. Produktfunktion {{formula}}f'=f_1'\cdot f_2+f_1\cdot f_2'{{/formula}}
19 1. Verkettung {{formula}}f'=(f_2'\circ f_1) \cdot f_1'{{/formula}}.
20
21 )))
22 1. Recherchiere die Ableitungsregeln (vgl. Merkhilfe, S. 5).
23 1. Begründe bzw. plausibilisiere, dass durch die Teilaufgaben (a), (b) und (c) die Ableitungsregeln für differenzierbare Funktionen im Wesentlichen gezeigt sind.
24 //Anmerkung//. Verwende dafür, dass differenzierbare Funktionen //lokal// "linear approximierbar" sind (vgl. dazu BPE 12.5 und 12.1), d.h., in der Nähe von //u// die Näherung {{formula}}f(x)\approx f(u)+f'(u)\cdot (x-u){{/formula}} gilt. Mit anderen Worten: Jede differenzierbare Funktion verhält sich, lokal betrachtet, wie eine lineare Funktion, welche die Ableitungsregeln erfüllen.
25 {{/aufgabe}}
26
27 {{aufgabe id="Logarithmusfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}}
28 Gegeben ist die natürliche Logarithmusfunktion {{formula}}\ln{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}_+^*{{/formula}} und zugehörigem Wertebereich {{formula}}\mathbb{R}{{/formula}}. Wir wollen ihre erste Ableitung {{formula}}\ln'{{/formula}} ermitteln und gehen dabei folgendermaßen vor.
29 //Implizites Differenzieren//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=e^{\ln(x)}=x{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}1=h'(x)=e^{\ln(x)}\cdot \ln'(x){{/formula}} nach {{formula}}\ln'{{/formula}} auf.
30 {{/aufgabe}}
31
32 {{aufgabe id="Potenzregel und Produktregel" afb="III" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}}
33 Gegeben ist eine Funktion //f// mit {{formula}}f(x)=x^k{{/formula}}.
34 (% class="abc" %)
35 1. Zeige die Instanz der Potenzregel für {{formula}}k=0,1,2{{/formula}} mittels Definition des Differenzialquotienten.
36 1. Zeige die Instanz der Potenzregel für {{formula}}k=3,4{{/formula}} mittels Produktregel.
37 //Ansatz//. {{formula}}f(x)=x^3=x^2\cdot x{{/formula}} bzw. {{formula}}f(x)=x^4=x^3\cdot x{{/formula}}.
38 1. Zeige die Instanz der Potenzregel für {{formula}}k=5{{/formula}} mittels Produktregel auf mindestens drei Weisen.
39 //Ansatz//. {{formula}}f(x)=x^5=x^4\cdot x=x^3\cdot x^2= x^{12}\cdot x^{-7}{{/formula}} oder ähnliches.
40 1. Zeige die Instanz der Potenzregel für {{formula}}k=1/2{{/formula}}.
41 //Ansatz (implizites Differenzieren)//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=f(x)\cdot f(x)=x{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}1=h'(x)=2 f(x) f'(x){{/formula}} nach {{formula}}f'(x){{/formula}} auf.
42 1. Zeige die Instanz der Potenzregel für {{formula}}k=-n{{/formula}} mit {{formula}}n\in \mathbb{N}^*{{/formula}}.
43 //Ansatz (implizites Differenzieren)//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=x^n\cdot f(x)=1{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}0=h'(x)=(x^n)'\cdot f(x)+x^n\cdot f'(x){{/formula}} nach {{formula}}f'(x){{/formula}} auf.
44 1. Zeige die Instanz der Potenzregel für {{formula}}k\in \mathbb{R}_+^*{{/formula}}.
45 //Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}f(x)=x^k=e^{k\cdot \ln(x)}{{/formula}} von //f// und verwende die Ableitung der e-Funktion zzgl. Kettenregel.
46 {{/aufgabe}}
47
48 {{aufgabe id="Spezielle Ableitungen" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}}
49 Gegeben sind die Winkelfunktionen {{formula}}\sin, \cos{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}{{/formula}} und zugehörigem Wertebereich {{formula}}[-1;+1]{{/formula}}. Wir wollen ihre ersten Ableitungen {{formula}}\sin', \cos'{{/formula}} ermitteln und gehen dabei folgendermaßen vor.
50 //Implizites Differenzieren//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=(\sin(x))^2+(\cos(x))^2=1{{/formula}} (trigonometrischer Pythagoras) mit ihrer ersten Ableitung {{formula}}0=h'(x)=2\sin(x)\sin'(x)+2\cos(x)\cos'(x){{/formula}}.
51 {{formula}}f(x)=\sin(x-(-\pi/2)){{/formula}}
52 {{/aufgabe}}