Wiki-Quellcode von Lösung Tangente in einem Kurvenpunkt III
Version 5.1 von Martin Stern am 2025/10/13 15:03
Verstecke letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
![]() |
3.1 | 1 | |
2 | {{formula}}h(x)=cos(\frac{\pi}{4}x)+1{{/formula}} | ||
3 | {{formula}}h'(x)=\frac{\pi}{4}\cdot (-sin(\frac{\pi}{4}x))+1=-\frac{\pi}{4} sin(\frac{\pi}{4}x){{/formula}} | ||
4 | {{formula}}h'(6)=-\frac{\pi}{4}sin(\frac{\pi}{4}\cdot 6)=\frac{\pi}{4}{{/formula}} | ||
![]() |
5.1 | 5 | {{formula}}h(6)=1{{/formula}} |
6 | Einsetzen von {{formula}}m=\frac{\pi}{4}{{/formula}} und {{formula}}P(6|1){{/formula}}in {{formula}}y=mx+c{{/formula}} liefert {{formula}}c=1-\frac{3}{2}\pi{{/formula}}. | ||
7 | {{formula}}t: y=\frac{\pi}{4}x+1-\frac{3}{2}\pi{{/formula}} |