Änderungen von Dokument BPE 13 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/19 13:43
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 3 hinzugefügt, 2 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -37,8 +37,20 @@ 37 37 {{/aufgabe}} 38 38 39 39 {{aufgabe id="Stau1" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}} 40 +[[image:Stauabb1.png||width="180" style="float: right"]] 40 40 Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau. 41 -An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2{{/formula}} beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an. 42 +An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit 43 + 44 +{{formula}} 45 +\begin{align*} 46 +f\left(x\right)&=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2 \\ 47 +&=-\frac{4}{16}x^4+3x^3-9x^2+8x 48 +\end{align*} 49 +{{/formula}} 50 + 51 +beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an. 52 +Die Abbildung 1 zeigt den Graphen von f für 0\le x\le4. 53 +Für die erste Ableitungsfunktion von f gilt f^\prime\left(x\right)=\left(5x^2-16x+8\right)\cdot\left(1-\frac{x}{4}\right). 42 42 1. Nenne die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründe anhand der Struktur des Funktionsterms von f, dass es keine weiteren solchen Zeitpunkte gibt. 43 43 1. Es gilt {{formula}}f\left(2\right)<0{{/formula}}. Gib die Bedeutung dieser Tatsache im Sachzusammenhang an. 44 44 1. Bestimme den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt. Zeige, dass der zugehörige Wert der momentanen Änderungsrate zwischen 2 km/h und 3 km/h liegt. ... ... @@ -133,7 +133,7 @@ 133 133 134 134 {{aufgabe id="Hängebrücke" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_9.pdf]]" niveau="e" tags="iqb"}} 135 135 Die //Abbildung 1// zeigt schematisch die achsensymmetrische Seitenansicht einer Hängebrücke. Die beiden vertikalen Pfeiler haben einen Abstand von 400 m. Die Wasseroberfläche liegt 20 m unterhalt der Fahrbahn. 136 -[[image:Hängebrücke. png||width="120" style="display:block;margin-left:auto;margin-right:auto"]]148 +[[image:Hängebrücke.PNG||width="650" style="display:block;margin-left:auto;margin-right:auto"]] 137 137 Die beiden Pfeiler gliedern die Brücke in einen linken, einen mittleren und einen rechten Abschnitt. Am oberen Ende jedes Pfeilers ist sowohl das Tragseil des mittleren Abschnitts als auch das Abspannseil des linken bzw. rechten Abschnitts befestigt. Die beiden Abspannseile sind am jeweiligen Ende der Fahrbahn verankert. 138 138 Im verwendeten Koordinatensystem entspricht eine Längeneinheit 10 m in der Realität. 139 139 In der Seitenansicht der Brücke verläuft die x-Achse entlang der horizontal verlaufenden Fahrbahn, die y-Achse entlang der Symmetrieachse. ... ... @@ -148,10 +148,12 @@ 148 148 1. Im Folgenden wird der mittlere Abschnitt der Brücke betrachtet. Die vertikal verlaufenden Halteseile verbinden die Fahrbahn mit dem Tragseil. Man hat sowohl von den Pfeilern als auch untereinander einen horizontalen Abstand von 16 m. 149 149 Der Verlauf des Tragseils wird modellhaft durch den Funktionsterm {{formula}}s(x)=\left(\frac{1}{8}\right)^6\cdot \left(x^4+2560x^2\right)+\frac{125}{256}{{/formula}} beschrieben. 150 150 (% style="list-style: lower-alpha" %) 151 -1*.Begründe, dass der Term von {{formula}}s{{/formula}} damit in Einklang steht, dass die Seitenansicht der Brücke achsensymmetrisch ist. 163 +1*. Begründe, dass der Term von {{formula}}s{{/formula}} damit in Einklang steht, dass die Seitenansicht der Brücke achsensymmetrisch ist. 152 152 1*. Zwei Punkte des Tragseils in der rechten Hälfte des mittleren Abschnitts haben einen horizontalen Abstand von 40 m und einen Höhenunterschied von 5 m. Gib eine Gleichung an, deren Lösung die x-Koordinate des höher liegenden Punkts im Modell ist. 153 153 1*. Gib die Bedeutung des Terms {{formula}}\left(\sum\limits_{k=1}^{24}s(-20+1,6\cdot k)\right)\cdot 10{{/formula}} im Sachzusammenhang an und begründe deine Angabe. 154 -1*. 166 +1*. Die Lösung der Gleichung {{formula}}\frac{s(x)-0}{x-20}\cdot s^\prime(x)=-1{{/formula}}ermöglicht die Berechnung eines Abstands im Sachzusammenhang. Gib an, um welchen Abstand es sich handelt, und begründe deine Angabe. 167 +1*. [[image:KreisbogenHängebrücke.PNG||width="220" style="float: right"]] 168 +Der Verlauf des Tragseils kann näherungsweise durch einen Kreisbogen beschrieben werden. Dazu dient der Kreis mit dem Mittelpunkt {{formula}}M\left(0|\frac{1699}{36}\right){{/formula}}, der durch die Punkte {{formula}}A\left(-20|5\right), B\left(20|5\right) \ \text{und} \ C\left(0|\frac{1}{2}\right){{/formula}} verläuft //(vgl. Abbildung 2)//. Berechne unter Verwendung des Kreisbogens die Länge des Tragseils. 155 155 {{/aufgabe}} 156 156 157 157 {{seitenreflexion/}}
- GraphStau.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -20.3 KB - Inhalt
- Hängebrücke.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -20.3 KB - Inhalt
- Hängebrücke.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +94.9 KB - Inhalt
- Stauabb1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +6.4 KB - Inhalt
- Stauabb2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +12.8 KB - Inhalt