Änderungen von Dokument BPE 13 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/19 13:43

Von Version 31.6
bearbeitet von akukin
am 2024/03/26 21:49
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 24.3
bearbeitet von akukin
am 2024/03/24 11:54
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -37,35 +37,24 @@
37 37  {{/aufgabe}}
38 38  
39 39  {{aufgabe id="Stau1" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}}
40 -[[image:Stauabb1.png||width="180" style="float: right"]]
41 41  Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau.
42 -An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit
43 -
44 -{{formula}}
45 -\begin{align*}
46 -f\left(x\right)&=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2 \\
47 -&=-\frac{4}{16}x^4+3x^3-9x^2+8x
48 -\end{align*}
49 -{{/formula}}
50 -
51 -beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an.
52 -Die //Abbildung 1// zeigt den Graphen von {{formula}}f{{/formula}} für {{formula}}0\le x\le4{{/formula}}.
53 -Für die erste Ableitungsfunktion von {{formula}}f{{/formula}} gilt {{formula}}f^\prime\left(x\right)=\left(5x^2-16x+8\right)\cdot\left(1-\frac{x}{4}\right){{/formula}}.
41 +An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2{{/formula}} beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an.
54 54  1. Nenne die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründe anhand der Struktur des Funktionsterms von f, dass es keine weiteren solchen Zeitpunkte gibt.
55 55  1. Es gilt {{formula}}f\left(2\right)<0{{/formula}}. Gib die Bedeutung dieser Tatsache im Sachzusammenhang an.
56 -1. Bestimme rechnerisch den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt.
44 +1. Bestimme den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt. Zeige, dass der zugehörige Wert der momentanen Änderungsrate zwischen 2 km/h und 3 km/h liegt.
57 57  1. Gib den Zeitpunkt an, zu dem der Stau am längsten ist. Begründe deine Angabe.
58 58  
59 59  Im Sachzusammenhang ist neben der Funktion {{formula}}f{{/formula}} die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}}s\left(x\right)=\left(\frac{x}{4}\right)^2\cdot\left(4-x\right)^3{{/formula}} von Bedeutung.
60 -
61 61  (% style="list-style:" start="5" %)
62 62  1. Begründe, dass die folgende Aussage richtig ist:
63 63  //Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.//
64 64  Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat.
65 -1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge.
66 -[[image:Stauabb2.png||width="250" style="float: right"]]
67 -1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der //Abbildung 2// gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.
68 -Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 2//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 2//.
52 +1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimmen Sie für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge.
53 +1. Bestimme denjenigen Zeitpunkt zwischen 06:00 Uhr und 10:00 Uhr, zu dem
54 + die Staulänge 0,5 km geringer ist als eine Stunde vorher.
55 +[[image:GraphStau.png||width="250" style="float: right"]]
56 +1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 1 gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.
57 +Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markieren Sie diesen Zeitpunkt in der Abbildung 1, begründe dein Markierung und veranschauliche deine Begründung in der Abbildung 1.
69 69  {{/aufgabe}}
70 70  
71 71  {{aufgabe id="Stau2" afb="I, II, III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}}
... ... @@ -144,7 +144,7 @@
144 144  
145 145  {{aufgabe id="Hängebrücke" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_9.pdf]]" niveau="e" tags="iqb"}}
146 146  Die //Abbildung 1// zeigt schematisch die achsensymmetrische Seitenansicht einer Hängebrücke. Die beiden vertikalen Pfeiler haben einen Abstand von 400 m. Die Wasseroberfläche liegt 20 m unterhalt der Fahrbahn.
147 -[[image:Hängebrücke.PNG||width="650" style="display:block;margin-left:auto;margin-right:auto"]]
136 +[[image:Hängebrücke.png||width="120" style="display:block;margin-left:auto;margin-right:auto"]]
148 148  Die beiden Pfeiler gliedern die Brücke in einen linken, einen mittleren und einen rechten Abschnitt. Am oberen Ende jedes Pfeilers ist sowohl das Tragseil des mittleren Abschnitts als auch das Abspannseil des linken bzw. rechten Abschnitts befestigt. Die beiden Abspannseile sind am jeweiligen Ende der Fahrbahn verankert.
149 149  Im verwendeten Koordinatensystem entspricht eine Längeneinheit 10 m in der Realität.
150 150  In der Seitenansicht der Brücke verläuft die x-Achse entlang der horizontal verlaufenden Fahrbahn, die y-Achse entlang der Symmetrieachse.
... ... @@ -159,12 +159,10 @@
159 159  1. Im Folgenden wird der mittlere Abschnitt der Brücke betrachtet. Die vertikal verlaufenden Halteseile verbinden die Fahrbahn mit dem Tragseil. Man hat sowohl von den Pfeilern als auch untereinander einen horizontalen Abstand von 16 m.
160 160  Der Verlauf des Tragseils wird modellhaft durch den Funktionsterm {{formula}}s(x)=\left(\frac{1}{8}\right)^6\cdot \left(x^4+2560x^2\right)+\frac{125}{256}{{/formula}} beschrieben.
161 161  (% style="list-style: lower-alpha" %)
162 -1*. Begründe, dass der Term von {{formula}}s{{/formula}} damit in Einklang steht, dass die Seitenansicht der Brücke achsensymmetrisch ist.
151 +1*.Begründe, dass der Term von {{formula}}s{{/formula}} damit in Einklang steht, dass die Seitenansicht der Brücke achsensymmetrisch ist.
163 163  1*. Zwei Punkte des Tragseils in der rechten Hälfte des mittleren Abschnitts haben einen horizontalen Abstand von 40 m und einen Höhenunterschied von 5 m. Gib eine Gleichung an, deren Lösung die x-Koordinate des höher liegenden Punkts im Modell ist.
164 164  1*. Gib die Bedeutung des Terms {{formula}}\left(\sum\limits_{k=1}^{24}s(-20+1,6\cdot k)\right)\cdot 10{{/formula}} im Sachzusammenhang an und begründe deine Angabe.
165 -1*. Die Lösung der Gleichung {{formula}}\frac{s(x)-0}{x-20}\cdot s^\prime(x)=-1{{/formula}}ermöglicht die Berechnung eines Abstands im Sachzusammenhang. Gib an, um welchen Abstand es sich handelt, und begründe deine Angabe.
166 -1*. [[image:KreisbogenHängebrücke.PNG||width="220" style="float: right"]]
167 -Der Verlauf des Tragseils kann näherungsweise durch einen Kreisbogen beschrieben werden. Dazu dient der Kreis mit dem Mittelpunkt {{formula}}M\left(0|\frac{1699}{36}\right){{/formula}}, der durch die Punkte {{formula}}A\left(-20|5\right), B\left(20|5\right) \ \text{und} \ C\left(0|\frac{1}{2}\right){{/formula}} verläuft //(vgl. Abbildung 2)//. Berechne unter Verwendung des Kreisbogens die Länge des Tragseils.
154 +1*.
168 168  {{/aufgabe}}
169 169  
170 170  {{seitenreflexion/}}
Hängebrücke.PNG
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -94.9 KB
Inhalt
KreisbogenHängebrücke.PNG
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -33.0 KB
Inhalt
Stauabb1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -6.4 KB
Inhalt
Stauabb2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -12.8 KB
Inhalt
GraphStau.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +20.3 KB
Inhalt
Hängebrücke.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +20.3 KB
Inhalt