Änderungen von Dokument BPE 13 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/19 13:43

Von Version 42.1
bearbeitet von akukin
am 2024/10/03 16:15
Änderungskommentar: Neues Bild Graphstau.png hochladen
Auf Version 50.1
bearbeitet von akukin
am 2024/10/19 13:40
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -26,7 +26,7 @@
26 26  (Bonus: Stelle //f// und die Annäherung aus c) mit Geogebra dar und berechne die durchschnittliche Abweichung von //f// und der Annäherungsfunktion.)
27 27  {{/aufgabe}}
28 28  
29 -{{aufgabe id="Steigung, Volumen" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_10.pdf]]" niveau="e" tags="iqb"}}
29 +{{aufgabe id="Steigung, Volumen" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_10.pdf]]" niveau="e" tags="iqb" cc="by"}}
30 30  [[image:GraphSteigungVolumen.PNG||width="170" style="float: right"]]
31 31  Die Abbildung zeigt den Graphen einer in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}}.
32 32  1. Beurteile die folgende Aussage:
... ... @@ -36,7 +36,7 @@
36 36  Begründe, dass dieses Volumen größer als {{formula}}\pi\cdot{0,5}^2+\pi\cdot1^2{{/formula}} ist.
37 37  {{/aufgabe}}
38 38  
39 -{{aufgabe id="Stau MMS" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}}
39 +{{aufgabe id="Stau MMS" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb" cc="by"}}
40 40  1. Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau.
41 41  An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2{{/formula}} beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an.
42 42  
... ... @@ -54,7 +54,7 @@
54 54  1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge.
55 55  1. Bestimme denjenigen Zeitpunkt zwischen 06:00 Uhr und 10:00 Uhr, zu dem
56 56   die Staulänge 0,5 km geringer ist als eine Stunde vorher.
57 -[[image:GraphStau.png||width="250" style="float: right"]]
57 +[[image:Graphstau.png||width="250" style="float: right"]]
58 58  1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 1 gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.
59 59  Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//.
60 60  
... ... @@ -67,11 +67,13 @@
67 67  1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage:
68 68  //Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.//
69 69  1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
70 -[[image:Stau2.png||width="320" style="float: left"]]
70 +[[image:Stau2.PNG||width="320" style="float: left"]]
71 71  
72 72  
73 73  
74 74  
75 +
76 +
75 75  
76 76  
77 77  
... ... @@ -81,7 +81,7 @@
81 81  {{/aufgabe}}
82 82  
83 83  
84 -{{aufgabe id="Stau WTR" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}}
86 +{{aufgabe id="Stau WTR" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb" cc="by"}}
85 85  1. [[image:Stauabb1.png||width="180" style="float: right"]]
86 86  Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau.
87 87  An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit
... ... @@ -104,7 +104,7 @@
104 104  
105 105  Im Sachzusammenhang ist neben der Funktion {{formula}}f{{/formula}} die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}}s\left(x\right)=\left(\frac{x}{4}\right)^2\cdot\left(4-x\right)^3=-\frac{1}{16}x^5+\frac{3}{4}x^4-3x^3+4x^2{{/formula}} von Bedeutung.
106 106  
107 -(% style="list-style:" start="5" %)
109 +(% style="list-style:lower-alpha" start="5" %)
108 108  1. Begründe, dass die folgende Aussage richtig ist:
109 109  //Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.//
110 110  Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat.
... ... @@ -136,7 +136,7 @@
136 136  
137 137  
138 138  
139 -{{aufgabe id="Schalldruck1" afb="I, II, III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_7.pdf]]" niveau="e" tags="iqb"}}
141 +{{aufgabe id="Schalldruck1" afb="I, II, III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_7.pdf]]" niveau="e" tags="iqb" cc="by"}}
140 140  [[image:Schalldruckabb1.png||width="230" style="float: right"]]
141 141  Gegeben ist die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_a:\ x\mapsto e^x\cdot\left(x-a\right)^2{{/formula}} mit {{formula}}a\in\mathbb{R}{{/formula}}. Der Graph von {{formula}}f_a{{/formula}} wird mit {{formula}}G_a{{/formula}} bezeichnet. Jeder Graph der Schar hat genau einen Hochpunkt und genau einen Tiefpunkt. Die //Abbildung 1// zeigt {{formula}}G_\frac{3}{2}{{/formula}}.
142 142  
... ... @@ -161,12 +161,14 @@
161 161  
162 162  
163 163  
166 +
167 +
164 164  (% style="list-style:" start="7" %)
165 165  1. Für jeden Wert von {{formula}}a{{/formula}} gilt {{formula}}f_{a,0}\left(a\right)=0\ \land\ f_{a,1}\left(a\right)=0\ \land\ f_{a,2}\left(a\right)\neq0{{/formula}}. Gib die Bedeutung dieser Tatsache für die Graphen der Funktion {{formula}}f_{a,-1}{{/formula}} an.
166 166  
167 167  {{/aufgabe}}
168 168  
169 -{{aufgabe id="Schalldruck2" afb="II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_7.pdf]]" niveau="e" tags="iqb"}}
173 +{{aufgabe id="Schalldruck2" afb="II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_7.pdf]]" niveau="e" tags="iqb" cc="by"}}
170 170  Der Schalldruckpegel eines bestimmten Wecktons wird durch die in {{formula}}\left[0;4\right]{{/formula}} definierte Funktion
171 171  
172 172  {{formula}}
... ... @@ -190,7 +190,7 @@
190 190  
191 191  {{/aufgabe}}
192 192  
193 -{{aufgabe id="Hängebrücke" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_9.pdf]]" niveau="e" tags="iqb"}}
197 +{{aufgabe id="Hängebrücke" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_9.pdf]]" niveau="e" tags="iqb" cc="by"}}
194 194  Die //Abbildung 1// zeigt schematisch die achsensymmetrische Seitenansicht einer Hängebrücke. Die beiden vertikalen Pfeiler haben einen Abstand von 400 m. Die Wasseroberfläche liegt 20 m unterhalt der Fahrbahn.
195 195  [[image:Hängebrücke.PNG||width="650" style="display:block;margin-left:auto;margin-right:auto"]]
196 196  Die beiden Pfeiler gliedern die Brücke in einen linken, einen mittleren und einen rechten Abschnitt. Am oberen Ende jedes Pfeilers ist sowohl das Tragseil des mittleren Abschnitts als auch das Abspannseil des linken bzw. rechten Abschnitts befestigt. Die beiden Abspannseile sind am jeweiligen Ende der Fahrbahn verankert.
... ... @@ -215,7 +215,7 @@
215 215  Der Verlauf des Tragseils kann näherungsweise durch einen Kreisbogen beschrieben werden. Dazu dient der Kreis mit dem Mittelpunkt {{formula}}M\left(0|\frac{1699}{36}\right){{/formula}}, der durch die Punkte {{formula}}A\left(-20|5\right), B\left(20|5\right) \ \text{und} \ C\left(0|\frac{1}{2}\right){{/formula}} verläuft //(vgl. Abbildung 2)//. Berechne unter Verwendung des Kreisbogens die Länge des Tragseils.
216 216  {{/aufgabe}}
217 217  
218 -{{aufgabe id="Sinusgraph" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_3.pdf]]" niveau="e" tags="iqb"}}
222 +{{aufgabe id="Sinusgraph" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_3.pdf]]" niveau="e" tags="iqb" cc="by"}}
219 219  Die Abbildung zeigt den Graphen {{formula}}G_f{{/formula}} der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=2\cdot\sin{\left(\frac{1}{2}x\right)}{{/formula}}.
220 220  [[image:2sin(0,5x).png||width="400" style="display:block;margin-left:auto;margin-right:auto"]]
221 221  1. Beurteile mithilfe der Abbildung, ob der Wert des Integrals {{formula}}\int_{-2}^{8}{f\left(x\right)\mathrm{d} x}{{/formula}} negativ ist.
... ... @@ -224,4 +224,11 @@
224 224  
225 225  {{/aufgabe}}
226 226  
231 +{{aufgabe id="" afb="" kompetenzen="K2, K4, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege.pdf]]" niveau="g" tags="iqb" cc="by"}}
232 +Die Abbildung zeigt den Graphen {{formula}}G_f{{/formula}} einer in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}}.
233 +1. Bestimme grafisch den Wert des Integrals
234 +{{formula}}\int_{-3}^{-1,5}{f\left(x\right)\mathrm{d} x}{{/formula}}
235 +1. Beschreibe, wie der Graph der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}u{{/formula}} mit {{formula}}u\left(x\right)=-f\left(x\right)+2{{/formula}} aus {{formula}}G_f{{/formula}} erzeugt werden kann. Gib die Koordinaten des Hochpunkts des Graphen von {{formula}}u{{/formula}} an.
236 +{{/aufgabe}}
237 +
227 227  {{seitenreflexion/}}
Stau2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -14.1 KB
Inhalt
Loseunggraphstau.PNG
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +107.5 KB
Inhalt
Stau2.PNG
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +88.7 KB
Inhalt