Änderungen von Dokument BPE 13 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/19 13:43
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 2 hinzugefügt, 5 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -51,12 +51,12 @@ 51 51 1. Begründe, dass die folgende Aussage richtig ist: 52 52 //Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.// 53 53 Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat. 54 -1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge. 54 +1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimmen Sie für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge. 55 55 1. Bestimme denjenigen Zeitpunkt zwischen 06:00 Uhr und 10:00 Uhr, zu dem 56 56 die Staulänge 0,5 km geringer ist als eine Stunde vorher. 57 -[[image:Graph stau.png||width="250" style="float: right"]]57 +[[image:GraphStau.png||width="250" style="float: right"]] 58 58 1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 1 gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde. 59 -Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//. 59 +Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markieren Sie diesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//. 60 60 61 61 (% style="list-style:" start="2" %) 62 62 1. Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}. ... ... @@ -67,13 +67,11 @@ 67 67 1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage: 68 68 //Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.// 69 69 1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}. 70 -[[image:Stau2. PNG||width="320" style="float: left"]]70 +[[image:Stau2.png||width="320" style="float: left"]] 71 71 72 72 73 73 74 74 75 - 76 - 77 77 78 78 79 79 ... ... @@ -84,7 +84,8 @@ 84 84 85 85 86 86 {{aufgabe id="Stau WTR" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}} 87 -1. [[image:Stauabb1.png||width="180" style="float: right"]] 85 + 86 +[[image:Stauabb1.png||width="180" style="float: right"]] 88 88 Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau. 89 89 An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit 90 90 ... ... @@ -98,15 +98,14 @@ 98 98 beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an. 99 99 Die //Abbildung 1// zeigt den Graphen von {{formula}}f{{/formula}} für {{formula}}0\le x\le4{{/formula}}. 100 100 Für die erste Ableitungsfunktion von {{formula}}f{{/formula}} gilt {{formula}}f^\prime\left(x\right)=\left(5x^2-16x+8\right)\cdot\left(1-\frac{x}{4}\right){{/formula}}. 101 -(% style="list-style: lower-alpha" %) 102 -1. Nenne die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründe anhand der Struktur des Funktionsterms von {{formula}}f{{/formula}}, dass es keine weiteren solchen Zeitpunkte gibt. 100 +1. Nenne die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründe anhand der Struktur des Funktionsterms von f, dass es keine weiteren solchen Zeitpunkte gibt. 103 103 1. Es gilt {{formula}}f\left(2\right)<0{{/formula}}. Gib die Bedeutung dieser Tatsache im Sachzusammenhang an. 104 104 1. Bestimme rechnerisch den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt. 105 105 1. Gib den Zeitpunkt an, zu dem der Stau am längsten ist. Begründe deine Angabe. 106 106 107 -Im Sachzusammenhang ist neben der Funktion {{formula}}f{{/formula}} die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}}s\left(x\right)=\left(\frac{x}{4}\right)^2\cdot\left(4-x\right)^3 =-\frac{1}{16}x^5+\frac{3}{4}x^4-3x^3+4x^2{{/formula}} von Bedeutung.105 +Im Sachzusammenhang ist neben der Funktion {{formula}}f{{/formula}} die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}}s\left(x\right)=\left(\frac{x}{4}\right)^2\cdot\left(4-x\right)^3{{/formula}} von Bedeutung. 108 108 109 -(% style="list-style: lower-alpha" start="5" %)107 +(% style="list-style:" start="5" %) 110 110 1. Begründe, dass die folgende Aussage richtig ist: 111 111 //Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.// 112 112 Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat. ... ... @@ -115,14 +115,13 @@ 115 115 1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der //Abbildung 2// gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde. 116 116 Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 2//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 2//. 117 117 118 -2. Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}. 119 -(% style="list-style: lower-alpha" %) 116 +Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}. 120 120 1. Gib in Abhängigkeit von {{formula}}k{{/formula}} das Verhalten von {{formula}}h_k{{/formula}} für {{formula}}x\rightarrow-\infty{{/formula}} an und begründe deine Angabe. 121 121 1. Ermittle die Koordinaten der beiden Punkte, die alle Graphen der Schar gemeinsam haben. 122 122 1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage: 123 123 //Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.// 124 -1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der //Abbildung 3// für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der //Abbildung4// für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.125 -[[image:Stau abb3,4.png||width="320" style="float: left"]]121 +1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der //Abbildung 2// für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der //Abbildung 3// für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}. 122 +[[image:Stau2.png||width="320" style="float: left"]] 126 126 127 127 128 128 ... ... @@ -163,8 +163,6 @@ 163 163 164 164 165 165 166 - 167 - 168 168 (% style="list-style:" start="7" %) 169 169 1. Für jeden Wert von {{formula}}a{{/formula}} gilt {{formula}}f_{a,0}\left(a\right)=0\ \land\ f_{a,1}\left(a\right)=0\ \land\ f_{a,2}\left(a\right)\neq0{{/formula}}. Gib die Bedeutung dieser Tatsache für die Graphen der Funktion {{formula}}f_{a,-1}{{/formula}} an. 170 170 ... ... @@ -219,13 +219,4 @@ 219 219 Der Verlauf des Tragseils kann näherungsweise durch einen Kreisbogen beschrieben werden. Dazu dient der Kreis mit dem Mittelpunkt {{formula}}M\left(0|\frac{1699}{36}\right){{/formula}}, der durch die Punkte {{formula}}A\left(-20|5\right), B\left(20|5\right) \ \text{und} \ C\left(0|\frac{1}{2}\right){{/formula}} verläuft //(vgl. Abbildung 2)//. Berechne unter Verwendung des Kreisbogens die Länge des Tragseils. 220 220 {{/aufgabe}} 221 221 222 -{{aufgabe id="Sinusgraph" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_3.pdf]]" niveau="e" tags="iqb"}} 223 -Die Abbildung zeigt den Graphen {{formula}}G_f{{/formula}} der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=2\cdot\sin{\left(\frac{1}{2}x\right)}{{/formula}}. 224 -[[image:2sin(0,5x).png||width="400" style="display:block;margin-left:auto;margin-right:auto"]] 225 -1. Beurteile mithilfe der Abbildung, ob der Wert des Integrals {{formula}}\int_{-2}^{8}{f\left(x\right)\mathrm{d} x}{{/formula}} negativ ist. 226 -1. Weise nach, dass folgende Aussage zutrifft: 227 -Die Tangente an {{formula}}G_f{{/formula}} im Koordinatenursprung ist die Gerade durch die Punkte {{formula}}\left(-1\middle|-1\right){{/formula}} und {{formula}}\left(1\middle|1\right){{/formula}}. 228 - 229 -{{/aufgabe}} 230 - 231 231 {{seitenreflexion/}}
- 2sin(0,5x).png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -28.8 KB - Inhalt
- Graphstau.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Inhalt
- Loseunggraphstau.PNG
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -107.5 KB - Inhalt
- Stau2.PNG
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -88.7 KB - Inhalt
- Stauabb3,4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -14.6 KB - Inhalt
- GraphStau.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +20.3 KB - Inhalt
- Stau2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +14.1 KB - Inhalt