Änderungen von Dokument BPE 13 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/19 13:43

Von Version 5.1
bearbeitet von Holger Engels
am 2023/11/23 14:58
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 9.1
bearbeitet von akukin
am 2024/03/05 12:52
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.akukin
Inhalt
... ... @@ -1,4 +1,6 @@
1 -{{aufgabe id="Uneigentliches Integral" afb="III" Kompetenzen="K2, K5" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA" zeit="40"}}
1 +{{seiteninhalt/}}
2 +
3 +{{aufgabe id="Uneigentliches Integral" afb="III" kompetenzen="K2, K5" niveau="p" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA" zeit="40"}}
2 2  Betrachtet wird für negative rationale Zahlen //q// die Potenzfunktion //p// mit {{formula}}p(x)=x^q;\: x\neq 0{{/formula}}.
3 3  
4 4  Für {{formula}}b \rightarrow \infty{{/formula}} heißt {{formula}}U_q=\int_1^b{p(x)}\cdot dx{{/formula}} //uneigentliches Integral// über //p//, falls {{formula}}U_q{{/formula}} eine reelle Zahl ergibt.
... ... @@ -8,7 +8,7 @@
8 8  [[image:x hoch minus 2.png]]
9 9  {{/aufgabe}}
10 10  
11 -{{aufgabe id="Annäherung" afb="III" Kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA" zeit="30"}}
13 +{{aufgabe id="Annäherung" afb="III" kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA" zeit="30"}}
12 12  [[image:cos und pot.png|| style="float: right" width="320"]]In {{formula}}[0; \pi/2]{{/formula}} soll die Funktion //f// mit {{formula}}f(x)=\cos{x}{{/formula}} durch eine Potenzfunktion //g// mit {{formula}}g(x)=1-ax^q{{/formula}} angenähert werden, wobei //q// eine positive rationale Zahl ist und //a// so gewählt wird, dass der Graph von //g// ebenfalls bei //π/2// eine Nullstelle besitzt.
13 13  
14 14  (% style="list-style: alphastyle" %)
... ... @@ -23,3 +23,5 @@
23 23  
24 24  (Bonus: Stelle //f// und die Annäherung aus c) mit Geogebra dar und berechne die durchschnittliche Abweichung von //f// und der Annäherungsfunktion.)
25 25  {{/aufgabe}}
28 +
29 +{{seitenreflexion/}}