Änderungen von Dokument Lösung Schalldruck1

Zuletzt geändert von akukin am 2024/03/27 18:49

Von Version 3.1
bearbeitet von akukin
am 2024/03/21 20:11
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 3.2
bearbeitet von akukin
am 2024/03/27 18:49
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -3,7 +3,14 @@
3 3  {{formula}}f_{\frac{3}{2}}^\prime\left(x\right)=e^x\cdot\left(x^2-x-\frac{3}{4}\right)\ \ \Rightarrow\ \ f_{\frac{3}{2}}^\prime\left(x_2\right)\approx-2,0668{{/formula}}
4 4  1. {{formula}}f_a\left(0\right)=a^2 \ \Rightarrow\ S_y\left(0\middle| a^2\right){{/formula}} ist Schnittpunkt mit der y-Achse.
5 5  {{formula}}f_a\left(x\right)=0\ \ \Leftrightarrow\ \ x=a\ \ \ \Rightarrow\ \ \ S_x\left(a\middle|0\right){{/formula}} ist (einziger) Schnittpunkt mit der x-Achse.
6 -{{formula}}f_a^{\prime\prime}\left(x\right)=e^x\cdot\left(x^2+\left(4-2a\right)x+a^2-2-4a\right)\ \ \ \Rightarrow\ \ \ f_a^{\prime\prime}\left(a\right)=e^a\cdot\left(a^2+4a-2a^2+a^2-2-4a\right)=-2\cdot e^a<0{{/formula}}
6 +
7 +{{formula}}
8 +\begin{align*}
9 +f_a^{\prime\prime}\left(x\right)&=e^x\cdot\left(x^2+\left(4-2a\right)x+a^2-2-4a\right) \\
10 +\Rightarrow \ f_a^{\prime\prime}\left(a\right)&=e^a\cdot\left(a^2+4a-2a^2+a^2-2-4a\right)=-2\cdot e^a<0
11 +\end{align*}
12 +{{/formula}}
13 +
7 7  Da {{formula}}x=a{{/formula}} eine doppelte Nullstelle ist, an der der Graph rechtsgekrümmt ist, liegt dort der Tiefpunkt.
8 8  1. {{formula}}A\left(a\right)=\int_{0}^{a}{f_a\left(x\right)\mathrm{d} x}=\left[e^x\cdot\left(x^2+\left(-2-2a\right)x+a^2+2a+2\right)\right]_0^a=2e^a-\left(a^2+2a+2\right){{/formula}}
9 9  {{formula}}A\left(a\right)=3\ \ \ \Leftrightarrow\ \ \ 2e^a=a^2+2a+5\ \ \ \Leftrightarrow\ \ \ a\approx1,7588{{/formula}}