Wiki-Quellcode von BPE 17.5 Zufallsgröße, Erwartungswert und Standardabweichung
Version 8.2 von Holger Engels am 2024/09/22 13:24
Verstecke letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
![]() |
1.1 | 1 | {{aufgabe id="Kugeln mit negativen Zahlen" afb="" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_13.pdf]]" niveau="e" tags="iqb"}} |
2 | In einem Behälter befinden sich fünf Kugeln, auf denen jeweils eine Zahl steht. Auf drei der Kugeln steht die Zahl 2, auf zwei der Kugeln die negative Zahl {{formula}}a{{/formula}}. Zweimal nacheinander wird eine Kugel zufällig entnommen und wieder zurückgelegt. | ||
3 | 1. Gib im Sachzusammenhang ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term {{formula}}2\cdot\frac{3}{5}\cdot\frac{2}{5}{{/formula}} berechnet werden kann. | ||
4 | 1. Die Zufallsgröße {{formula}}X{{/formula}} gibt das Produkt der Zahlen an, die auf den beiden entnommenen Kugeln stehen. Der Erwartungswert von {{formula}}X{{/formula}} ist 4. Bestimme den Wert von {{formula}}a{{/formula}}. | ||
![]() |
2.1 | 5 | {{/aufgabe}} |
![]() |
1.1 | 6 | |
![]() |
4.1 | 7 | {{aufgabe id="Zufallsgröße Tetraeder" afb="" kompetenzen="K1, K2, K3, K4, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_20.pdf]]" niveau="e" tags="iqb"}} |
![]() |
8.1 | 8 | Betrachtet wird ein Tetraeder, bei dem die Seiten mit den Zahlen 1 bis 4 durchnummeriert sind. Beim Werfen des Tetraeders werden alle Zahlen mit gleicher Wahrscheinlichkeit erzielt. Das Tetraeder wird viermal geworfen. Die Zufallsgröße {{formula}}X{{/formula}} beschreibt die Anzahl der Würfe, bei denen die Zahl 1 erzielt wird. Die Wahrscheinlichkeitsverteilung von {{formula}}X{{/formula}} ist in der Abbildung 1 dargestellt. |
9 | |||
10 | [[image:TetraederZufallsgroesse.PNG||width="700" style="display:block;margin-left:auto;margin-right:auto"]] | ||
11 | |||
12 | 1. Die Zufallsgröße {{formula}}Y{{/formula}} gibt die Anzahl der Würfe an, bei denen die Zahl 1 nicht erzielt wird. Stelle die Wahrscheinlichkeitsverteilung von {{formula}}Y{{/formula}} in Abbildung 2 dar. | ||
13 | 1. Bei einem anderen Zufallsexperiment werden ein roter und ein grüner Würfel, bei denen die Seiten jeweils mit den Zahlen 1 bis 6 durchnummeriert sind, viermal gleichzeitig geworfen. Gib zu diesem Zufallsexperiment eine Zufallsgröße {{formula}}Z{{/formula}} an, die die gleiche Wahrscheinlichkeitsverteilung hat wie {{formula}}X{{/formula}} und begründe deine Angabe. | ||
![]() |
4.1 | 14 | {{/aufgabe}} |
15 | |||
![]() |
3.1 | 16 | {{seitenreflexion}} |