Änderungen von Dokument BPE 13.2 Formeln für Mantelflächeninhalt und Volumen
Zuletzt geändert von Bastian Knöpfle am 2026/02/04 13:19
Von Version 45.1
bearbeitet von Bastian Knöpfle
am 2026/02/04 14:00
am 2026/02/04 14:00
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 44.1
bearbeitet von Bastian Knöpfle
am 2026/02/04 13:48
am 2026/02/04 13:48
Änderungskommentar:
Neues Bild Kegelstumpf.png hochladen
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -32,19 +32,6 @@ 32 32 Erläutere den Zusammenhang zwischen dem Oberflächeninhalt und der Querschnittsfläche (graue Fläche) einer Kugel. 33 33 {{/aufgabe}} 34 34 35 -{{aufgabe id="Formel zusammengesetzer Körper" afb="II" kompetenzen="K3" zeit="6" quelle="Bastian Knöpfle"}} 36 -Gegeben ist ein Hohlzylinder. 37 - 38 -[[image:Hohlzylinder||width=200]] 39 -(% class="abc" %) 40 -1. Gib eine Formel für einen solchen Hohlzylinder an. 41 -Gegeben ist ein Kegelstumpf. Mit der Formel für das Volumen: 42 - {{formula}}V=\frac{1}{3} \cdot \pi \cdot r_1^2 \cdot h_1-\frac{1}{3} \cdot \pi \cdot r_2^2 \cdot h_2{{/formula}} 43 -[[image:Kegelstumpf||width=200]] 44 -1. Erkläre wie man auf diese Formel kommt. 45 - 46 -{{/aufgabe}} 47 - 48 48 {{aufgabe id="Volumen Zylinder" afb="III" kompetenzen="K1,K6" zeit="4" quelle="Bastian Knöpfle"}} 49 49 Gegeben ist das Schrägbild eines Zylinders. 50 50 [[image:Zylinder||width=200]]