Wiki-Quellcode von Lösung Rechnen mit Potenzen

Version 1.1 von akukin am 2025/07/11 19:25

Verstecke letzte Bearbeiter
akukin 1.1 1 1.a) {{formula}}3a^2 + 5b^3 - 2a^2 + c^2 + 2b^3=a^2+7b^3+c^2{{/formula}}
2 1.b) {{formula}}2xy^2 + 8x^2 + y^2x - 2x^2 + xy^2 + 2y^2x=3xy^2+6x^2+3y^2x{{/formula}}
3 1.c)
4
5 {{formula}}
6 \begin{align}
7 &2(4x)^2 + 2 - 6x^2 - (3x)^2 - 6x - 1 \\
8 &=2(16x^2)+2-6x^2-9x^2-6x-1\\
9 &=32x^2+1-15x^2-6x\\
10 &=17x^2-6x+1
11 \end{align}
12 {{/formula}}
13
14 Wende die Potenzgesetze an:
15 2.a) {{formula}}a^2 \cdot a^4 + b \cdot b^5=a^6+b^6{{/formula}}
16
17 2.b) {{formula}}-10a^2 + 2a(a+2)=-10a^2+2a^2+4a=-8a^2+4a{{/formula}}
18
19 2.c) {{formula}}y^3 \cdot (-x)^3=(y\cdot(-x))^3=(-xy)^3{{/formula}}
20
21 2.d) {{formula}}\left(\frac{x}{3}\right)^4 \cdot 3^4=\left(\frac{x}{3}\cdot 3\right)^4=x^4{{/formula}}
22
23 2.e) {{formula}}\frac{b^{n+2}}{b^n}=b^{n+2-n}=b^2{{/formula}}
24
25 2.f) {{formula}}\frac{(2x)^5}{(2x)^{a+5}}=(2x)^{5-a-5}=(2x)^{-a}{{/formula}}
26
27 2.g) {{formula}}\frac{2^3}{\left(\frac{1}{2}\right)^3}=\left(\frac{2}{\frac{1}{2}}\right)=4^3=64{{/formula}}
28
29 2.h) {{formula}}\frac{(-2x)^4}{(-y)^4}=\left(\frac{-2x}{-y}\right)^4=\frac{16x^4}{y^4}{{/formula}}
30
31 2.i) {{formula}}(-2y)^3=(-2)^3\cdot y^3=-8y^3{{/formula}}
32
33 2.j) {{formula}}(5a^3b^2)^3=5^3\cdot a^{3\cdot3}\cdot b^{2\cdot 3}=125a^9b^6{{/formula}}