Wiki-Quellcode von Lösung Termumformungen

Zuletzt geändert von akukin am 2025/08/15 14:28

Verstecke letzte Bearbeiter
akukin 1.1 1 Vereinfache:
akukin 5.1 2 1.a)(((
akukin 1.1 3 {{formula}}
akukin 3.1 4 \begin{align*}
5 &\color{blue}{2(4a - 5) - 3(2a - 3) + 4(-3a + 5)} \\
akukin 1.1 6 &= 8a - 10 - 6a + 9 - 12a + 20 = \textbf{-10a + 19}
akukin 3.1 7 \end{align*}
akukin 1.1 8 {{/formula}}
akukin 5.1 9 )))
akukin 1.1 10 1.b)
11
12 {{formula}}
akukin 3.1 13 \begin{align*}
14 &\color{blue}{x - (x + 3) - 4(-x + 1)}\\
akukin 1.1 15 &= x - x - 3 + 4x - 4 = \textbf{4x - 7}
akukin 3.1 16 \end{align*}
akukin 1.1 17 {{/formula}}
18
19 2.a)
20
21 {{formula}}
akukin 3.1 22 \begin{align*}
23 &\color{blue}{6a - 2(7b - (4a + 3b)) + 2((2a - b) - 7a)}\\
akukin 1.1 24 &= 6a - 2(7b - 4a - 3b) + 2(2a - b - 7a) \\
25 &= 6a - 14b + 8a + 6b + 4a - 2b - 14a = \textbf{4a - 10b}
akukin 3.1 26 \end{align*}
akukin 1.1 27 {{/formula}}
28
29 2.b)
30
31 {{formula}}
akukin 3.1 32 \begin{align*}
33 &\color{blue}{2x + 3(4 - (2x + 1) + 3x)}\\
akukin 1.1 34 &= 2x + 3(4 - 2x - 1 + 3x)\\
35 &= 2x + 3(3 + x) = 2x + 9 + 3x = \textbf{5x + 9}
akukin 3.1 36 \end{align*}
akukin 1.1 37 {{/formula}}
38
39 Multipliziere aus:
40
akukin 3.1 41 3.a) {{formula}}\color{blue}{(3a + b)(a - 5b)} = \mathbf{3a^2 - 14ab - 5b^2}{{/formula}}
akukin 1.1 42 3.b) {{formula}}(4x - 3)(-x + \frac{1}{3})= \mathbf{-4x^2 + \frac{13}{3}x - 1}{{/formula}}
43
akukin 3.1 44 4.a) {{formula}}\color{blue}{(2x + y)^2}= \mathbf{4x^2 + 4xy + y^2}{{/formula}}
45 4.b) {{formula}}\color{blue}{(x - 3y)^2}= \mathbf{x^2 - 6xy + 9y^2}{{/formula}}
46 4.c) {{formula}}\color{blue}{(x^2 - 2)(x^2 + 2)}= \mathbf{x^4 - 4}{{/formula}}
akukin 1.1 47 4.d)
48
49 {{formula}}
akukin 3.1 50 \begin{align*}
51 &\color{blue}{(3 - x)^2 - (x + 1)^2 + 2(x - 1)(x + 1)}\\
akukin 1.1 52 &= (9 - 6x + x^2) - (x^2 + 2x + 1) + 2(x^2 - 1)\\
53 &= 9 - 6x + x^2 - x^2 - 2x - 1 + 2x^2 - 2 = \mathbf{2x^2 - 8x + 6}
akukin 3.1 54 \end{align*}
akukin 1.1 55 {{/formula}}
56
57 Faktorisiere:
58
akukin 4.1 59 5.a) {{formula}}\color{blue}{12ax^2 - 8ax}= \mathbf{4ax(3x - 2)}{{/formula}}
60 5.b) {{formula}}\color{blue}{3x^2 - 12}= 3(x^2 - 4) = \mathbf{3(x - 2)(x + 2)}{{/formula}}
61 5.c) {{formula}}\color{blue}{\frac{3ax^2 - 3a}{9x + 9}}= \frac{3a(x^2 - 1)}{9(x + 1)} = \frac{a(x - 1)(x + 1)}{3(x + 1)} = \mathbf{\frac{a(x - 1)}{3}}{{/formula}}