Zuletzt geändert von Holger Engels am 2025/12/01 19:31

Von Version 18.1
bearbeitet von Dirk Tebbe
am 2025/11/05 13:49
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 12.1
bearbeitet von Dirk Tebbe
am 2025/11/05 12:45
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -7,26 +7,6 @@
7 7  [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen.
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen.
9 9  
10 -{{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa"}}
11 -
12 -
13 -Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben.
14 -(%class=abc%)
15 -1. Zeichne die drei Punkte {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte.
16 -1. Die beiden Mittelsenktechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Miß jeweils die Entfernung von Punkt S zu den drei Punkten {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest?
17 -1. Überprüfe durch Konstruktion, ob die Mittelsenktrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt S verläuft.
18 -{{/aufgabe}}
19 -
20 -{{aufgabe id="Haltestellen" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa"}}
21 -
22 -
23 -Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser im einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(5|6){{/formula}} und Moritz in{{formula}}M(6|5){{/formula}}.
24 -(%class=abc%)
25 -1. Zeichne die drei Punkte {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte.
26 -1. Die beiden Mittelsenktechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Miß jeweils die Entfernung von Punkt S zu den drei Punkten {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest?
27 -1. Überprüfe durch Konstruktion, ob die Mittelsenktrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt S verläuft.
28 -{{/aufgabe}}
29 -
30 30  {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}}
31 31  Die Seitenhalbierende in einem Dreieck verbinden jeweils eine Ecke des Dreiecks mit der Mitte der gegenüberliegenden Seite.
32 32