Änderungen von Dokument BPE 5.1 Ortslinien und Geometrie im Dreieck
Zuletzt geändert von Holger Engels am 2025/12/01 19:31
Von Version 20.3
bearbeitet von Dirk Tebbe
am 2025/11/05 15:33
am 2025/11/05 15:33
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 16.2
bearbeitet von Dirk Tebbe
am 2025/11/05 13:34
am 2025/11/05 13:34
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -7,34 +7,16 @@ 7 7 [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen. 8 8 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen. 9 9 10 -{{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="1 5" cc="by-sa"}}10 +{{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa"}} 11 11 12 12 13 13 Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben. 14 14 (%class=abc%) 15 -1. Zeichne {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte. 16 -1. Die beiden Mittelsenkrechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Messe jeweils die Entfernung von {{formula}}S{{/formula}} zu {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest? 17 -1. Überprüfe durch Konstruktion, ob die Mittelsenkrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt {{formula}}S{{/formula}} verläuft. 18 -1. Beschreibe, welche Bedeutung Punkt {{formula}}S{{/formula}} für das Dreieck hat. 15 +1. Zeichne die drei Punkte {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte. 16 +1. Die beiden Mittelsenktechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Miß jeweils die Entfernung von Punkt S zu den drei Punkten {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest? 17 +1. Überprüfe durch Konstruktion, ob die Mittelsenktrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt S verläuft. 19 19 {{/aufgabe}} 20 20 21 -{{aufgabe id="Haltestellen" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}} 22 - 23 - 24 -Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser in einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(5|6){{/formula}} und Moritz in {{formula}}M(6|5){{/formula}}. 25 -(%class=abc%) Alle drei fahren mit dem Bus zur Schule. Die Bushaltestellen befinden sich in den Punkten {{formula}}A(-2|1){{/formula}} und {{formula}}B(6|-3){{/formula}}. 26 -1. Untersuche, wer von den drei Kindern von seinem Wohnort zu den beiden Haltestellen jeweils den gleichen Weg hat. 27 -1. Ermittle weitere Punkte, die von den beiden Haltestellen jeweils gleich weit entfernt sind und nenne die Ortslinie, auf der all diese Punkte liegen. 28 -{{/aufgabe}} 29 - 30 -{{aufgabe id="Anwendungsaufgabe zu Lotfällen und Mittelparallele" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}} 31 - 32 - 33 -1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}P(2|4){{/formula}} in ein Koordinatensystem ein. 34 -1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}P{{/formula}} geht. Gib ihre Gleichung an. 35 -1. Konstruiere die Gerade, die von {{formula}}g{{/formula}} und {{formula}}P{{/formula}} den gleichen Abstand hat. 36 -{{/aufgabe}} 37 - 38 38 {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}} 39 39 Die Seitenhalbierende in einem Dreieck verbinden jeweils eine Ecke des Dreiecks mit der Mitte der gegenüberliegenden Seite. 40 40